![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > Applications of computing > Databases > Data mining
Locating empirical information on specific service industry characteristics is not an easy task, even for an individual familiar with various sources of data. This book is a quick source of information on service industry statistics across many nations of the world. The reader is introduced to finding key sources of data, building analytical ratios from diverse sources, and understanding the advantages and disadvantages of data selection methods in the service sector. The global nature of the data compiled in this book, especially an extensive coverage of the United States, makes it an invaluable resource to active researchers and stakeholders in the service industry as well as those who seek to enter it.
The book features original papers from the 2nd International Conference on Smart IoT Systems: Innovations and Computing (SSIC 2019), presenting scientific work related to smart solution concepts. It discusses computational collective intelligence, which includes interactions between smart devices, smart environments and smart interactions, as well as information technology support for such areas. It also describes how to successfully approach various government organizations for funding for business and the humanitarian technology development projects. Thanks to the high-quality content and the broad range of the topics covered, the book appeals to researchers pursuing advanced studies.
This third edition details new and updated methods and protocols on important databases and data mining tools. Chapters guides readers through archives of macromolecular sequences and three-dimensional structures, databases of protein-protein interactions, methods for prediction conformational disorder, mutant thermodynamic stability, aggregation, and drug response. Quality of structural data and their release, soft mechanics applications in biology, and protein flexibility are considered, too, together with pan-genome analyses, rational drug combination screening and Omics Deep Mining. Written in the format of the highly successful Methods in Molecular Biology series, each chapter includes an introduction to the topic, lists necessary materials, includes step-by-step, readily reproducible protocols. Authoritative and cutting-edge, Data Mining Techniques for the Life Sciences, Third Edition aims to be a practical guide to researches to help further their study in this field.
This book constitutes the refereed post-conference proceedings of the Fourth IFIP TC 12 International Conference on Computational Intelligence in Data Science, ICCIDS 2021, held in Chennai, India, in March 2021. The 20 revised full papers presented were carefully reviewed and selected from 75 submissions. The papers cover topics such as computational intelligence for text analysis; computational intelligence for image and video analysis; blockchain and data science.
This book facilitates both the theoretical background and applications of fuzzy, intuitionistic fuzzy and rough, fuzzy rough sets in the area of data science. This book provides various individual, soft computing, optimization and hybridization techniques of fuzzy and intuitionistic fuzzy sets with rough sets and their applications including data handling and that of type-2 fuzzy systems. Machine learning techniques are effectively implemented to solve a diversity of problems in pattern recognition, data mining and bioinformatics. To handle different nature of problems, including uncertainty, the book highlights the theory and recent developments on uncertainty, fuzzy systems, feature extraction, text categorization, multiscale modeling, soft computing, machine learning, deep learning, SMOTE, data handling, decision making, Diophantine fuzzy soft set, data envelopment analysis, centrally measures, social networks, Volterra–Fredholm integro-differential equation, Caputo fractional derivative, interval optimization, decision making, classification problems. This book is predominantly envisioned for researchers and students of data science, medical scientists and professional engineers.
This monograph offers an original broad and very diverse exploration of the seriation domain in data analysis, together with building a specific relation to clustering.Relative to a data table crossing a set of objects and a set of descriptive attributes, the search for orders which correspond respectively to these two sets is formalized mathematically and statistically. State-of-the-art methods are created and compared with classical methods and a thorough understanding of the mutual relationships between these methods is clearly expressed. The authors distinguish two families of methods: Geometric representation methods Algorithmic and Combinatorial methods Original and accurate methods are provided in the framework for both families. Their basis and comparison is made on both theoretical and experimental levels. The experimental analysis is very varied and very comprehensive. Seriation in Combinatorial and Statistical Data Analysis has a unique character in the literature falling within the fields of Data Analysis, Data Mining and Knowledge Discovery. It will be a valuable resource for students and researchers in the latter fields.
This book is a comprehensive, hands-on guide to the basics of data mining and machine learning with a special emphasis on supervised and unsupervised learning methods. The book lays stress on the new ways of thinking needed to master in machine learning based on the Python, R, and Java programming platforms. This book first provides an understanding of data mining, machine learning and their applications, giving special attention to classification and clustering techniques. The authors offer a discussion on data mining and machine learning techniques with case studies and examples. The book also describes the hands-on coding examples of some well-known supervised and unsupervised learning techniques using three different and popular coding platforms: R, Python, and Java. This book explains some of the most popular classification techniques (K-NN, Naive Bayes, Decision tree, Random forest, Support vector machine etc,) along with the basic description of artificial neural network and deep neural network. The book is useful for professionals, students studying data mining and machine learning, and researchers in supervised and unsupervised learning techniques.
This book addresses the pertinent issues that will need to be considered by those interested in physical security problems of the future. Specifically, it examines how changes in the accessibility of technology - data, hardware, software - are likely to affect both threat and mitigation considerations for Chemical, Biological, Radiological and Explosive (CBRE) scenarios and how social science can inform us of the human aspects of each. The trend towards an ever more socio-technical society and infrastructures - encapsulated by concepts such as 'smart cities' - is drawn out as a key motivation for adopting more holistic risk approaches to such security problems, than is currently the case.
This book presents the proceedings of the 9th Asian South Pacific Association of Sport Psychology International Congress (ASPASP) 2022, Kuching, Malaysia, which entails the different sporting innovation themes, namely, Applied Sport and Social Psychology, Health and Exercise, Motor Control and Learning, Counselling and Clinical Psychology, Biomechanics, Data Mining and Machine Learning in Sports amongst others. It presents the state-of-the-art technological advancements towards the aforesaid themes and provides a platform to shape the future direction of sport science, specifically in the field sports and exercise psychology. ​
Fuzzy cognitive maps (FCMs) have gained popularity in the scientific community due to their capabilities in modeling and decision making for complex problems.This book presents a novel algorithm called glassoFCM to enable automatic learning of FCM models from data. Specifically, glassoFCM is a combination of two methods, glasso (a technique originated from machine learning) for data modeling and FCM simulation for decision making. The book outlines that glassoFCM elaborates simple, accurate, and more stable models that are easy to interpret and offer meaningful decisions. The research results presented are based on an investigation related to a real-world business intelligence problem to evaluate characteristics that influence employee work readiness.Finally, this book provides readers with a step-by-step guide of the 'fcm' package to execute and visualize their policies and decisions through the FCM simulation process.
In this book, Dr. Soofastaei and his colleagues reveal how all mining managers can effectively deploy advanced analytics in their day-to-day operations- one business decision at a time. Most mining companies have a massive amount of data at their disposal. However, they cannot use the stored data in any meaningful way. The powerful new business tool-advanced analytics enables many mining companies to aggressively leverage their data in key business decisions and processes with impressive results. From statistical analysis to machine learning and artificial intelligence, the authors show how many analytical tools can improve decisions about everything in the mine value chain, from exploration to marketing. Combining the science of advanced analytics with the mining industrial business solutions, introduce the "Advanced Analytics in Mining Engineering Book" as a practical road map and tools for unleashing the potential buried in your company's data. The book is aimed at providing mining executives, managers, and research and development teams with an understanding of the business value and applicability of different analytic approaches and helping data analytics leads by giving them a business framework in which to assess the value, cost, and risk of potential analytical solutions. In addition, the book will provide the next generation of miners - undergraduate and graduate IT and mining engineering students - with an understanding of data analytics applied to the mining industry. By providing a book with chapters structured in line with the mining value chain, we will provide a clear, enterprise-level view of where and how advanced data analytics can best be applied. This book highlights the potential to interconnect activities in the mining enterprise better. Furthermore, the book explores the opportunities for optimization and increased productivity offered by better interoperability along the mining value chain - in line with the emerging vision of creating a digital mine with much-enhanced capabilities for modeling, simulation, and the use of digital twins - in line with leading "digital" industries.
Machine learning (ML) has become a commonplace element in our everyday lives and a standard tool for many fields of science and engineering. To make optimal use of ML, it is essential to understand its underlying principles. This book approaches ML as the computational implementation of the scientific principle. This principle consists of continuously adapting a model of a given data-generating phenomenon by minimizing some form of loss incurred by its predictions. The book trains readers to break down various ML applications and methods in terms of data, model, and loss, thus helping them to choose from the vast range of ready-made ML methods. The book's three-component approach to ML provides uniform coverage of a wide range of concepts and techniques. As a case in point, techniques for regularization, privacy-preservation as well as explainability amount to specific design choices for the model, data, and loss of a ML method.
This book is a collection of high scientific novel contributions addressing several of these challenges. These articles are extended versions of a selection of the best papers that were initially presented at the French-speaking conferences EGC'2019held in Metz (France, January 21-25, 2019). These extended versions have been accepted after an additional peer-review process among papers already accepted in long format at the conference. Concerning the conference, the long and short papers selection were also the result of a double blind peer review process among the hundreds of papers initially submitted to each edition of the conference (acceptance rate for long papers is about 25%.
Covid-19 has hit the world unprepared, as the deadliest pandemic of the century. Governments and authorities, as leaders and decision makers fighting against the virus, enormously tap on the power of AI and its data analytics models for urgent decision supports at the greatest efforts, ever seen from human history. This book showcases a collection of important data analytics models that were used during the epidemic, and discusses and compares their efficacy and limitations. Readers who from both healthcare industries and academia can gain unique insights on how data analytics models were designed and applied on epidemic data. Taking Covid-19 as a case study, readers especially those who are working in similar fields, would be better prepared in case a new wave of virus epidemic may arise again in the near future.
Statistics and hypothesis testing are routinely used in areas (such as linguistics) that are traditionally not mathematically intensive. In such fields, when faced with experimental data, many students and researchers tend to rely on commercial packages to carry out statistical data analysis, often without understanding the logic of the statistical tests they rely on. As a consequence, results are often misinterpreted, and users have difficulty in flexibly applying techniques relevant to their own research they use whatever they happen to have learned. A simple solution is to teach the fundamental ideas of statistical hypothesis testing without using too much mathematics. This book provides a non-mathematical, simulation-based introduction to basic statistical concepts and encourages readers to try out the simulations themselves using the source code and data provided (the freely available programming language R is used throughout). Since the code presented in the text almost always requires the use of previously introduced programming constructs, diligent students also acquire basic programming abilities in R. The book is intended for advanced undergraduate and graduate students in any discipline, although the focus is on linguistics, psychology, and cognitive science. It is designed for self-instruction, but it can also be used as a textbook for a first course on statistics. Earlier versions of the book have been used in undergraduate and graduate courses in Europe and the US. Vasishth and Broe have written an attractive introduction to the foundations of statistics. It is concise, surprisingly comprehensive, self-contained and yet quite accessible. Highly recommended. Harald Baayen, Professor of Linguistics, University of Alberta, Canada By using the text students not only learn to do the specific things outlined in the book, they also gain a skill set that empowers them to explore new areas that lie beyond the book s coverage. Colin Phillips, Professor of Linguistics, University of Maryland, USA
This book describes various methods and recent advances in predictive computing and information security. It highlights various predictive application scenarios to discuss these breakthroughs in real-world settings. Further, it addresses state-of-art techniques and the design, development and innovative use of technologies for enhancing predictive computing and information security. Coverage also includes the frameworks for eTransportation and eHealth, security techniques, and algorithms for predictive computing and information security based on Internet-of-Things and Cloud computing. As such, the book offers a valuable resource for graduate students and researchers interested in exploring predictive modeling techniques and architectures to solve information security, privacy and protection issues in future communication.
This book includes high-quality papers presented at the Second International Conference on Data Science and Management (ICDSM 2021), organized by the Gandhi Institute for Education and Technology, Bhubaneswar, from 19 to 20 February 2021. It features research in which data science is used to facilitate the decision-making process in various application areas, and also covers a wide range of learning methods and their applications in a number of learning problems. The empirical studies, theoretical analyses and comparisons to psychological phenomena described contribute to the development of products to meet market demands.
This book discusses the effective use of modern ICT solutions for business needs, including the efficient use of IT resources, decision support systems, business intelligence, data mining and advanced data processing algorithms, as well as the processing of large datasets (inter alia social networking such as Twitter and Facebook, etc.). The ability to generate, record and process qualitative and quantitative data, including in the area of big data, the Internet of Things (IoT) and cloud computing offers a real prospect of significant improvements for business, as well as the operation of a company within Industry 4.0. The book presents new ideas, approaches, solutions and algorithms in the area of knowledge representation, management and processing, quantitative and qualitative data processing (including sentiment analysis), problems of simulation performance, and the use of advanced signal processing to increase the speed of computation. The solutions presented are also aimed at the effective use of business process modeling and notation (BPMN), business process semantization and investment project portfolio selection. It is a valuable resource for researchers, data analysts, entrepreneurs and IT professionals alike, and the research findings presented make it possible to reduce costs, increase the accuracy of investment, optimize resources and streamline operations and marketing.
Data-mining has become a popular research topic in recent years for the treatment of the "data rich and information poor" syndrome. Currently, application oriented engineers are only concerned with their immediate problems, which results in an ad hoc method of problem solving. Researchers, on the other hand, lack an understanding of the practical issues of data-mining for real-world problems and often concentrate on issues that are of no significance to the practitioners. In this volume, we hope to remedy problems by (1) presenting a theoretical foundation of data-mining, and (2) providing important new directions for data-mining research. A set of well respected data mining theoreticians were invited to present their views on the fundamental science of data mining. We have also called on researchers with practical data mining experiences to present new important data-mining topics.
This book provides conceptual understanding of machine learning algorithms though supervised, unsupervised, and advanced learning techniques. The book consists of four parts: foundation, supervised learning, unsupervised learning, and advanced learning. The first part provides the fundamental materials, background, and simple machine learning algorithms, as the preparation for studying machine learning algorithms. The second and the third parts provide understanding of the supervised learning algorithms and the unsupervised learning algorithms as the core parts. The last part provides advanced machine learning algorithms: ensemble learning, semi-supervised learning, temporal learning, and reinforced learning. Provides comprehensive coverage of both learning algorithms: supervised and unsupervised learning; Outlines the computation paradigm for solving classification, regression, and clustering; Features essential techniques for building the a new generation of machine learning.
Pattern recognition in data is a well known classical problem that falls under the ambit of data analysis. As we need to handle different data, the nature of patterns, their recognition and the types of data analyses are bound to change. Since the number of data collection channels increases in the recent time and becomes more diversified, many real-world data mining tasks can easily acquire multiple databases from various sources. In these cases, data mining becomes more challenging for several essential reasons. We may encounter sensitive data originating from different sources - those cannot be amalgamated. Even if we are allowed to place different data together, we are certainly not able to analyze them when local identities of patterns are required to be retained. Thus, pattern recognition in multiple databases gives rise to a suite of new, challenging problems different from those encountered before. Association rule mining, global pattern discovery and mining patterns of select items provide different patterns discovery techniques in multiple data sources. Some interesting item-based data analyses are also covered in this book. Interesting patterns, such as exceptional patterns, icebergs and periodic patterns have been recently reported. The book presents a thorough influence analysis between items in time-stamped databases. The recent research on mining multiple related databases is covered while some previous contributions to the area are highlighted and contrasted with the most recent developments.
This book provides an overview of how comparable corpora can be used to overcome the lack of parallel resources when building machine translation systems for under-resourced languages and domains. It presents a wealth of methods and open tools for building comparable corpora from the Web, evaluating comparability and extracting parallel data that can be used for the machine translation task. It is divided into several sections, each covering a specific task such as building, processing, and using comparable corpora, focusing particularly on under-resourced language pairs and domains. The book is intended for anyone interested in data-driven machine translation for under-resourced languages and domains, especially for developers of machine translation systems, computational linguists and language workers. It offers a valuable resource for specialists and students in natural language processing, machine translation, corpus linguistics and computer-assisted translation, and promotes the broader use of comparable corpora in natural language processing and computational linguistics.
This book highlights new trends and challenges in research on agents and the new digital and knowledge economy. It includes papers on business process management, agent-based modeling and simulation, and anthropic-oriented computing that were originally presented at the 15th International KES Conference on Agents and Multi-Agent Systems: Technologies and Applications (KES-AMSTA 2021), being held as a Virtual Conference in June 14-16, 2021. The respective papers cover topics such as software agents, multi-agent systems, agent modeling, mobile and cloud computing, big data analysis, business intelligence, artificial intelligence, social systems, computer embedded systems, and nature-inspired manufacturing, all of which contribute to the modern digital economy.
This open access book covers the use of data science, including advanced machine learning, big data analytics, Semantic Web technologies, natural language processing, social media analysis, time series analysis, among others, for applications in economics and finance. In addition, it shows some successful applications of advanced data science solutions used to extract new knowledge from data in order to improve economic forecasting models. The book starts with an introduction on the use of data science technologies in economics and finance and is followed by thirteen chapters showing success stories of the application of specific data science methodologies, touching on particular topics related to novel big data sources and technologies for economic analysis (e.g. social media and news); big data models leveraging on supervised/unsupervised (deep) machine learning; natural language processing to build economic and financial indicators; and forecasting and nowcasting of economic variables through time series analysis. This book is relevant to all stakeholders involved in digital and data-intensive research in economics and finance, helping them to understand the main opportunities and challenges, become familiar with the latest methodological findings, and learn how to use and evaluate the performances of novel tools and frameworks. It primarily targets data scientists and business analysts exploiting data science technologies, and it will also be a useful resource to research students in disciplines and courses related to these topics. Overall, readers will learn modern and effective data science solutions to create tangible innovations for economic and financial applications. |
You may like...
Handbook of Research on Automated…
Mrutyunjaya Panda, Harekrishna Misra
Hardcover
R7,766
Discovery Miles 77 660
New Opportunities for Sentiment Analysis…
Aakanksha Sharaff, G. R. Sinha, …
Hardcover
R6,648
Discovery Miles 66 480
Big Data and Smart Service Systems
Xiwei Liu, Rangachari Anand, …
Hardcover
Opinion Mining and Text Analytics on…
Pantea Keikhosrokiani, Moussa Pourya Asl
Hardcover
R9,276
Discovery Miles 92 760
|