![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > Applications of computing > Databases > Data mining
This book describes in detail sampling techniques that can be used for unsupervised and supervised cases, with a focus on sampling techniques for machine learning algorithms. It covers theory and models of sampling methods for managing scalability and the "curse of dimensionality", their implementations, evaluations, and applications. A large part of the book is dedicated to database comprising standard feature vectors, and a special section is reserved to the handling of more complex objects and dynamic scenarios. The book is ideal for anyone teaching or learning pattern recognition and interesting teaching or learning pattern recognition and is interested in the big data challenge. It provides an accessible introduction to the field and discusses the state of the art concerning sampling techniques for supervised and unsupervised task. Provides a comprehensive description of sampling techniques for unsupervised and supervised tasks; Describe implementation and evaluation of algorithms that simultaneously manage scalable problems and curse of dimensionality; Addresses the role of sampling in dynamic scenarios, sampling when dealing with complex objects, and new challenges arising from big data. "This book represents a timely collection of state-of-the art research of sampling techniques, suitable for anyone who wants to become more familiar with these helpful techniques for tackling the big data challenge." M. Emre Celebi, Ph.D., Professor and Chair, Department of Computer Science, University of Central Arkansas "In science the difficulty is not to have ideas, but it is to make them work" From Carlo Rovelli
In this third edition of Vehicle Accident Analysis & Reconstruction Methods, Raymond M. Brach and R. Matthew Brach have expanded and updated their essential work for professionals in the field of accident reconstruction. Most accidents can be reconstructed effectively using of calculations and investigative and experimental data: the authors present the latest scientific, engineering, and mathematical reconstruction methods, providing a firm scientific foundation for practitioners. Accidents that cannot be reconstructed using the methods in this book are rare. In recent decades, the field of crash reconstruction has been transformed through the use of technology. The advent of event data records (EDRs) on vehicles signaled the era of modern crash reconstruction, which utilizes the same physical evidence that was previously available as well as electronic data that are measured/captured before, during, and after the collision. There is increased demand for more professional and accurate reconstruction as more crash data is available from vehicle sensors. The third edition of this essential work includes a new chapter on the use of EDRs as well as examples using EDR data in accident reconstruction. Early chapters feature foundational material that is necessary for the understanding of vehicle collisions and vehicle motion; later chapters present applications of the methods and include example reconstructions. As a result, Vehicle Accident Analysis & Reconstruction Methods remains the definitive resource in accident reconstruction.
This book constitutes the refereed post-conference proceedings of the 10th IFIP WG 5.14 International Conference on Computer and Computing Technologies in Agriculture, CCTA 2016, held in Dongying, China, in October 2016. The 55 revised papers presented were carefully reviewed and selected from 128 submissions. They cover a wide range of interesting theories and applications of information technology in agriculture, including intelligent sensing, cloud computing, key technologies of the Internet of Things, precision agriculture, animal husbandry information technology, including Internet + modern animal husbandry, livestock big data platform and cloud computing applications, intelligent breeding equipment, precision production models, water product networking and big data , including fishery IoT, intelligent aquaculture facilities, and big data applications.
This volume complies a set of Data Mining techniques and new applications in real biomedical scenarios. Chapters focus on innovative data mining techniques, biomedical datasets and streams analysis, and real applications. Written in the highly successful Methods in Molecular Biology series format, chapters are thought to show to Medical Doctors and Engineers the new trends and techniques that are being applied to Clinical Medicine with the arrival of new Information and Communication technologies Authoritative and practical, Data Mining in Clinical Medicine seeks to aid scientists with new approaches and trends in the field.
This book offers a clear understanding of the concept of context-aware machine learning including an automated rule-based framework within the broad area of data science and analytics, particularly, with the aim of data-driven intelligent decision making. Thus, we have bestowed a comprehensive study on this topic that explores multi-dimensional contexts in machine learning modeling, context discretization with time-series modeling, contextual rule discovery and predictive analytics, recent-pattern or rule-based behavior modeling, and their usefulness in various context-aware intelligent applications and services. The presented machine learning-based techniques can be employed in a wide range of real-world application areas ranging from personalized mobile services to security intelligence, highlighted in the book. As the interpretability of a rule-based system is high, the automation in discovering rules from contextual raw data can make this book more impactful for the application developers as well as researchers. Overall, this book provides a good reference for both academia and industry people in the broad area of data science, machine learning, AI-Driven computing, human-centered computing and personalization, behavioral analytics, IoT and mobile applications, and cybersecurity intelligence.
This volume contains nineteen research papers belonging to the areas of computational statistics, data mining, and their applications. Those papers, all written specifically for this volume, are their authors' contributions to honour and celebrate Professor Jacek Koronacki on the occcasion of his 70th birthday. The book's related and often interconnected topics, represent Jacek Koronacki's research interests and their evolution. They also clearly indicate how close the areas of computational statistics and data mining are.
This book presents the state-of-the-art in various aspects of analysis and mining of online social networks. Within the broader context of online social networks, it focuses on important and upcoming topics of social network analysis and mining such as the latest in sentiment trends research and a variety of techniques for community detection and analysis. The book collects chapters that are expanded versions of the best papers presented at the IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM'2015), which was held in Paris, France in August 2015. All papers have been peer reviewed and checked carefully for overlap with the literature. The book will appeal to students and researchers in social network analysis/mining and machine learning.
In the fields of data mining and control, the huge amount of unstructured data and the presence of uncertainty in system descriptions have always been critical issues. The book Randomized Algorithms in Automatic Control and Data Mining introduces the readers to the fundamentals of randomized algorithm applications in data mining (especially clustering) and in automatic control synthesis. The methods proposed in this book guarantee that the computational complexity of classical algorithms and the conservativeness of standard robust control techniques will be reduced. It is shown that when a problem requires "brute force" in selecting among options, algorithms based on random selection of alternatives offer good results with certain probability for a restricted time and significantly reduce the volume of operations.
This book presents the basics of search engines and their components. It introduces, for the first time, the concept of Cellular Automata in Web technology and discusses the prerequisites of Cellular Automata. In today's world, searching data from the World Wide Web is a common phenomenon for virtually everyone. It is also a fact that searching the tremendous amount of data from the Internet is a mammoth task - and handling the data after retrieval is even more challenging. In this context, it is important to understand the need for space efficiency in data storage. Though Cellular Automata has been utilized earlier in many fields, in this book the authors experiment with employing its strong mathematical model to address some critical issues in the field of Web Mining.
With the increasing advances in hardware technology for data collection, and advances in software technology (databases) for data organization, computer scientists have increasingly participated in the latest advancements of the outlier analysis field. Computer scientists, specifically, approach this field based on their practical experiences in managing large amounts of data, and with far fewer assumptions- the data can be of any type, structured or unstructured, and may be extremely large. Outlier Analysis is a comprehensive exposition, as understood by data mining experts, statisticians and computer scientists. The book has been organized carefully, and emphasis was placed on simplifying the content, so that students and practitioners can also benefit. Chapters will typically cover one of three areas: methods and techniques commonly used in outlier analysis, such as linear methods, proximity-based methods, subspace methods, and supervised methods; data domains, such as, text, categorical, mixed-attribute, time-series, streaming, discrete sequence, spatial and network data; and key applications of these methods as applied to diverse domains such as credit card fraud detection, intrusion detection, medical diagnosis, earth science, web log analytics, and social network analysis are covered.
This book focuses on recent technical advancements and state-of-the art technologies for analyzing characteristic features and probabilistic modelling of complex social networks and decentralized online network architectures. Such research results in applications related to surveillance and privacy, fraud analysis, cyber forensics, propaganda campaigns, as well as for online social networks such as Facebook. The text illustrates the benefits of using advanced social network analysis methods through application case studies based on practical test results from synthetic and real-world data. This book will appeal to researchers and students working in these areas.
This book provides a general introduction to the most important geophysical exploration methods and their application to forensic sciences. It describes physical principles, campaign procedures and processing, as well as interpretation techniques, while also highlighting new acquisition and data analysis procedures. A large section of the book is devoted to applications, from measurements to the interpretation of data. Further, the book shows how to design and perform a forensic survey, and offers guidance on selecting the best method for the problem at hand, and on selecting the best type of data acquisition and processing. Written in straightforward language and chiefly intended as an introductory text for students in several scientific fields, the book also offers a useful guide for specialists who want to expand their expertise in this fascinating discipline.
This edited volume offers a clear in-depth overview of research covering a variety of issues in social search and recommendation systems. Within the broader context of social network analysis it focuses on important and up-coming topics such as real-time event data collection, frequent-sharing pattern mining, improvement of computer-mediated communication, social tagging information, search system personalization, new detection mechanisms for the identification of online user groups, and many more. The twelve contributed chapters are extended versions of conference papers as well as completely new invited chapters in the field of social search and recommendation systems. This first-of-its kind survey of current methods will be of interest to researchers from both academia and industry working in the field of social networks.
This volume details several important databases and data mining tools. Data Mining Techniques for the Life Sciences, Second Edition guides readers through archives of macromolecular three-dimensional structures, databases of protein-protein interactions, thermodynamics information on protein and mutant stability, "Kbdock" protein domain structure database, PDB_REDO databank, erroneous sequences, substitution matrices, tools to align RNA sequences, interesting procedures for kinase family/subfamily classifications, new tools to predict protein crystallizability, metabolomics data, drug-target interaction predictions, and a recipe for protein-sequence-based function prediction and its implementation in the latest version of the ANNOTATOR software suite. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Data Mining Techniques for the Life Sciences, Second Edition aims to ensure successful results in the further study of this vital field.
This book contains some selected papers from the International Conference on Extreme Learning Machine 2015, which was held in Hangzhou, China, December 15-17, 2015. This conference brought together researchers and engineers to share and exchange R&D experience on both theoretical studies and practical applications of the Extreme Learning Machine (ELM) technique and brain learning. This book covers theories, algorithms ad applications of ELM. It gives readers a glance of the most recent advances of ELM.
The proceedings from the eighth KMO conference represent the findings of this international meeting which brought together researchers and developers from industry and the academic world to report on the latest scientific and technical advances on knowledge management in organizations. This conference provided an international forum for authors to present and discuss research focused on the role of knowledge management for innovative services in industries, to shed light on recent advances in social and big data computing for KM as well as to identify future directions for researching the role of knowledge management in service innovation and how cloud computing can be used to address many of the issues currently facing KM in academia and industrial sectors.
This text presents an overview of smart information systems for both the private and public sector, highlighting the research questions that can be studied by applying computational intelligence. The book demonstrates how to transform raw data into effective smart information services, covering the challenges and potential of this approach. Each chapter describes the algorithms, tools, measures and evaluations used to answer important questions. This is then further illustrated by a diverse selection of case studies reflecting genuine problems faced by SMEs, multinational manufacturers, service companies, and the public sector. Features: provides a state-of-the-art introduction to the field, integrating contributions from both academia and industry; reviews novel information aggregation services; discusses personalization and recommendation systems; examines sensor-based knowledge acquisition services, describing how the analysis of sensor data can be used to provide a clear picture of our world.
This book presents innovative research works to demonstrate the potential and the advancements of computing approaches to utilize healthcare centric and medical datasets in solving complex healthcare problems. Computing technique is one of the key technologies that are being currently used to perform medical diagnostics in the healthcare domain, thanks to the abundance of medical data being generated and collected. Nowadays, medical data is available in many different forms like MRI images, CT scan images, EHR data, test reports, histopathological data and doctor patient conversation data. This opens up huge opportunities for the application of computing techniques, to derive data-driven models that can be of very high utility, in terms of providing effective treatment to patients. Moreover, machine learning algorithms can uncover hidden patterns and relationships present in medical datasets, which are too complex to uncover, if a data-driven approach is not taken. With the help of computing systems, today, it is possible for researchers to predict an accurate medical diagnosis for new patients, using models built from previous patient data. Apart from automatic diagnostic tasks, computing techniques have also been applied in the process of drug discovery, by which a lot of time and money can be saved. Utilization of genomic data using various computing techniques is another emerging area, which may in fact be the key to fulfilling the dream of personalized medications. Medical prognostics is another area in which machine learning has shown great promise recently, where automatic prognostic models are being built that can predict the progress of the disease, as well as can suggest the potential treatment paths to get ahead of the disease progression.
This book presents an overview of a variety of contemporary statistical, mathematical and computer science techniques which are used to further the knowledge in the medical domain. The authors focus on applying data mining to the medical domain, including mining the sets of clinical data typically found in patient's medical records, image mining, medical mining, data mining and machine learning applied to generic genomic data and more. This work also introduces modeling behavior of cancer cells, multi-scale computational models and simulations of blood flow through vessels by using patient-specific models. The authors cover different imaging techniques used to generate patient-specific models. This is used in computational fluid dynamics software to analyze fluid flow. Case studies are provided at the end of each chapter. Professionals and researchers with quantitative backgrounds will find Computational Medicine in Data Mining and Modeling useful as a reference. Advanced-level students studying computer science, mathematics, statistics and biomedicine will also find this book valuable as a reference or secondary text book.
This book is an authoritative handbook of current topics, technologies and methodological approaches that may be used for the study of scholarly impact. The included methods cover a range of fields such as statistical sciences, scientific visualization, network analysis, text mining, and information retrieval. The techniques and tools enable researchers to investigate metric phenomena and to assess scholarly impact in new ways. Each chapter offers an introduction to the selected topic and outlines how the topic, technology or methodological approach may be applied to metrics-related research. Comprehensive and up-to-date, Measuring Scholarly Impact: Methods and Practice is designed for researchers and scholars interested in informetrics, scientometrics, and text mining. The hands-on perspective is also beneficial to advanced-level students in fields from computer science and statistics to information science.
This book covers the latest advances in Big Data technologies and provides the readers with a comprehensive review of the state-of-the-art in Big Data processing, analysis, analytics, and other related topics. It presents new models, algorithms, software solutions and methodologies, covering the full data cycle, from data gathering to their visualization and interaction, and includes a set of case studies and best practices. New research issues, challenges and opportunities shaping the future agenda in the field of Big Data are also identified and presented throughout the book, which is intended for researchers, scholars, advanced students, software developers and practitioners working at the forefront in their field.
This monograph will provide an in-depth mathematical treatment of modern multiple test procedures controlling the false discovery rate (FDR) and related error measures, particularly addressing applications to fields such as genetics, proteomics, neuroscience and general biology. The book will also include a detailed description how to implement these methods in practice. Moreover new developments focusing on non-standard assumptions are also included, especially multiple tests for discrete data. The book primarily addresses researchers and practitioners but will also be beneficial for graduate students.
This book presents the latest research advances in complex network structure analytics based on computational intelligence (CI) approaches, particularly evolutionary optimization. Most if not all network issues are actually optimization problems, which are mostly NP-hard and challenge conventional optimization techniques. To effectively and efficiently solve these hard optimization problems, CI based network structure analytics offer significant advantages over conventional network analytics techniques. Meanwhile, using CI techniques may facilitate smart decision making by providing multiple options to choose from, while conventional methods can only offer a decision maker a single suggestion. In addition, CI based network structure analytics can greatly facilitate network modeling and analysis. And employing CI techniques to resolve network issues is likely to inspire other fields of study such as recommender systems, system biology, etc., which will in turn expand CI's scope and applications. As a comprehensive text, the book covers a range of key topics, including network community discovery, evolutionary optimization, network structure balance analytics, network robustness analytics, community-based personalized recommendation, influence maximization, and biological network alignment. Offering a rich blend of theory and practice, the book is suitable for students, researchers and practitioners interested in network analytics and computational intelligence, both as a textbook and as a reference work.
Imagine yourself as a military officer in a conflict zone trying to identify locations of weapons caches supporting road-side bomb attacks on your country's troops. Or imagine yourself as a public health expert trying to identify the location of contaminated water that is causing diarrheal diseases in a local population. Geospatial abduction is a new technique introduced by the authors that allows such problems to be solved. Geospatial Abduction provides the mathematics underlying geospatial abduction and the algorithms to solve them in practice; it has wide applicability and can be used by practitioners and researchers in many different fields. Real-world applications of geospatial abduction to military problems are included. Compelling examples drawn from other domains as diverse as criminology, epidemiology and archaeology are covered as well. This book also includes access to a dedicated website on geospatial abduction hosted by University of Maryland. Geospatial Abduction targets practitioners working in general AI, game theory, linear programming, data mining, machine learning, and more. Those working in the fields of computer science, mathematics, geoinformation, geological and biological science will also find this book valuable. |
![]() ![]() You may like...
Handbook of Research on Automated…
Mrutyunjaya Panda, Harekrishna Misra
Hardcover
R8,424
Discovery Miles 84 240
Social Sensing - Building Reliable…
Dong Wang, Tarek Abdelzaher, …
Paperback
R1,924
Discovery Miles 19 240
Intelligent Analysis of Multimedia…
Siddhartha Bhattacharyya, Hrishikesh Bhaumik, …
Hardcover
R6,091
Discovery Miles 60 910
New Opportunities for Sentiment Analysis…
Aakanksha Sharaff, G. R. Sinha, …
Hardcover
R7,211
Discovery Miles 72 110
Opinion Mining and Text Analytics on…
Pantea Keikhosrokiani, Moussa Pourya Asl
Hardcover
R10,065
Discovery Miles 100 650
|