![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > Applications of computing > Databases > Data mining
This book provides a practical and fairly comprehensive review of Data Science through the lens of dimensionality reduction, as well as hands-on techniques to tackle problems with data collected in the real world. State-of-the-art results and solutions from statistics, computer science and mathematics are explained from the point of view of a practitioner in any domain science, such as biology, cyber security, chemistry, sports science and many others. Quantitative and qualitative assessment methods are described to implement and validate the solutions back in the real world where the problems originated. The ability to generate, gather and store volumes of data in the order of tera- and exo bytes daily has far outpaced our ability to derive useful information with available computational resources for many domains. This book focuses on data science and problem definition, data cleansing, feature selection and extraction, statistical, geometric, information-theoretic, biomolecular and machine learning methods for dimensionality reduction of big datasets and problem solving, as well as a comparative assessment of solutions in a real-world setting. This book targets professionals working within related fields with an undergraduate degree in any science area, particularly quantitative. Readers should be able to follow examples in this book that introduce each method or technique. These motivating examples are followed by precise definitions of the technical concepts required and presentation of the results in general situations. These concepts require a degree of abstraction that can be followed by re-interpreting concepts like in the original example(s). Finally, each section closes with solutions to the original problem(s) afforded by these techniques, perhaps in various ways to compare and contrast dis/advantages to other solutions.
"Machine Learning and Data Mining for Computer Security" provides an overview of the current state of research in machine learning and data mining as it applies to problems in computer security. This book has a strong focus on information processing and combines and extends results from computer security. The first part of the book surveys the data sources, the learning and mining methods, evaluation methodologies, and past work relevant for computer security. The second part of the book consists of articles written by the top researchers working in this area. These articles deals with topics of host-based intrusion detection through the analysis of audit trails, of command sequences and of system calls as well as network intrusion detection through the analysis of TCP packets and the detection of malicious executables. This book fills the great need for a book that collects and frames work on developing and applying methods from machine learning and data mining to problems in computer security.
'Data Mining with Ontologies' examines methodologies and research for the development of ontological foundations for data mining.
Interval computing combined with fuzzy logic has become an emerging tool in studying artificial intelligence and knowledge processing (AIKP) applications since it models uncertainties frequently raised in the field. This book provides introductions for both interval and fuzzy computing in a very accessible style. Application algorithms covered in this book include quantitative and qualitative data mining with interval valued datasets, decision making systems with interval valued parameters, interval valued Nash games and interval weighted graphs. Successful applications in studying finance and economics, etc are also included. This book can serve as a handbook or a text for readers interested in applying interval and soft computing for AIKP.
This book addresses and examines the impacts of applications and services for data management and analysis, such as infrastructure, platforms, software, and business processes, on both academia and industry. The chapters cover effective approaches in dealing with the inherent complexity and increasing demands of big data management from an applications perspective. Various case studies included have been reported by data analysis experts who work closely with their clients in such fields as education, banking, and telecommunications. Understanding how data management has been adapted to these applications will help students, instructors and professionals in the field. Application areas also include the fields of social network analysis, bioinformatics, and the oil and gas industries.
This book offers researchers an understanding of the fundamental issues and a good starting point to work on this rapidly expanding field. It provides a comprehensive survey of current developments of heterogeneous information network. It also presents the newest research in applications of heterogeneous information networks to similarity search, ranking, clustering, recommendation. This information will help researchers to understand how to analyze networked data with heterogeneous information networks. Common data mining tasks are explored, including similarity search, ranking, and recommendation. The book illustrates some prototypes which analyze networked data. Professionals and academics working in data analytics, networks, machine learning, and data mining will find this content valuable. It is also suitable for advanced-level students in computer science who are interested in networking or pattern recognition.
This book describes process mining use cases and business impact along the value chain, from corporate to local applications, representing the state of the art in domain know-how. Providing a set of industrial case studies and best practices, it complements academic publications on the topic. Further the book reveals the challenges and failures in order to offer readers practical insights and guidance on how to avoid the pitfalls and ensure successful operational deployment. The book is divided into three parts: Part I provides an introduction to the topic from fundamental principles to key success factors, and an overview of operational use cases. As a holistic description of process mining in a business environment, this part is particularly useful for readers not yet familiar with the topic. Part II presents detailed use cases written by contributors from a variety of functions and industries. Lastly, Part III provides a brief overview of the future of process mining, both from academic and operational perspectives. Based on a solid academic foundation, process mining has received increasing interest from operational businesses, with many companies already reaping the benefits. As the first book to present an overview of successful industrial applications, it is of particular interest to professionals who want to learn more about the possibilities and opportunities this new technology offers. It is also a valuable resource for researchers looking for empirical results when considering requirements for enhancements and further developments.
Data Mining and Multi agent Integration aims to re?ect state of the art research and development of agent mining interaction and integration (for short, agent min ing). The book was motivated by increasing interest and work in the agents data min ing, and vice versa. The interaction and integration comes about from the intrinsic challenges faced by agent technology and data mining respectively; for instance, multi agent systems face the problem of enhancing agent learning capability, and avoiding the uncertainty of self organization and intelligence emergence. Data min ing, if integrated into agent systems, can greatly enhance the learning skills of agents, and assist agents with predication of future states, thus initiating follow up action or intervention. The data mining community is now struggling with mining distributed, interactive and heterogeneous data sources. Agents can be used to man age such data sources for data access, monitoring, integration, and pattern merging from the infrastructure, gateway, message passing and pattern delivery perspectives. These two examples illustrate the potential of agent mining in handling challenges in respective communities. There is an excellent opportunity to create innovative, dual agent mining interac tion and integration technology, tools and systems which will deliver results in one new technology.
Advance Praise for Indian Mujahideen: Computational Analysis and Public Policy This book presents a highly innovative computational approach to analyzing the strategic behavior of terrorist groups and formulating counter-terrorism policies. It would be very useful for international security analysts and policymakers. Uzi Arad, National Security Advisor to the Prime Minister of Israel and Head, Israel National Security Council (2009-2011) An important book on a complex security problem. Issues have been analysed in depth based on quality research. Insightful and well-balanced in describing the way forward. Naresh Chandra, Indian Ambassador to the USA (1996-2001) and Cabinet Secretary (1990-1992). An objective and clinical account of the origins, aims, extra-territorial links and modus-operandi, of a growingly dangerous terrorist organization that challenges the federal, democratic, secular and pluralistic ethos of India s polity. The authors have meticulously researched and analysed the multi-faceted challenges that the Indian Mujahideen poses and realistically dwelt on the ways in which these challenges could be faced and overcome. G. Parthasarathy, High Commissioner of India to Australia (1995-1998) and Pakistan (1998-2000). This book provides the first in-depth look at how advanced mathematics and modern computing technology can influence insights on analysis and policies directed at the Indian Mujahideen (IM) terrorist group. The book also summarizes how the IM group is committed to the destabilization of India by leveraging links with other terror groups such as Lashkar-e-Taiba, and through support from the Pakistani Government and Pakistan s intelligence service. Foreword by The Hon. Louis J. Freeh."
Every second, users produce large amounts of image data from medical and satellite imaging systems. Image mining techniques that are capable of extracting useful information from image data are becoming increasingly useful, especially in medicine and the health sciences. Biomedical Image Analysis and Mining Techniques for Improved Health Outcomes addresses major techniques regarding image processing as a tool for disease identification and diagnosis, as well as treatment recommendation. Highlighting current research intended to advance the medical field, this publication is essential for use by researchers, advanced-level students, academicians, medical professionals, and technology developers. An essential addition to the reference material available in the field of medicine, this timely publication covers a range of applied research on data mining, image processing, computational simulation, data visualization, and image retrieval.
Overcoming many challenges, data mining has already established discipline capability in many domains. ""Dynamic and Advanced Data Mining for Progressing Technological Development: Innovations and Systemic Approaches"" discusses advances in modern data mining research in today's rapidly growing global and technological environment. A critical mass of the most sought after knowledge, this publication serves as an important reference tool to leading research within information search and retrieval techniques.
News headlines about privacy invasions, discrimination, and biases discovered in the platforms of big technology companies are commonplace today, and big tech's reluctance to disclose how they operate counteracts ideals of transparency, openness, and accountability. This book is for computer science students and researchers who want to study big tech's corporate surveillance from an experimental, empirical, or quantitative point of view and thereby contribute to holding big tech accountable. As a comprehensive technical resource, it guides readers through the corporate surveillance landscape and describes in detail how corporate surveillance works, how it can be studied experimentally, and what existing studies have found. It provides a thorough foundation in the necessary research methods and tools, and introduces the current research landscape along with a wide range of open issues and challenges. The book also explains how to consider ethical issues and how to turn research results into real-world change.
The domains of Pattern Recognition and Machine Learning have experienced exceptional interest and growth, however the overwhelming number of methods and applications can make the fields seem bewildering. This text offers an accessible and conceptually rich introduction, a solid mathematical development emphasizing simplicity and intuition. Students beginning to explore pattern recognition do not need a suite of mathematically advanced methods or complicated computational libraries to understand and appreciate pattern recognition; rather the fundamental concepts and insights, eminently teachable at the undergraduate level, motivate this text. This book provides methods of analysis that the reader can realistically undertake on their own, supported by real-world examples, case-studies, and worked numerical / computational studies.
Data Mining for Business Applications presents the state-of-the-art research and development outcomes on methodologies, techniques, approaches and successful applications in the area. The contributions mark a paradigm shift from data-centered pattern mining to domain driven actionable knowledge discovery for next-generation KDD research and applications. The contents identify how KDD techniques can better contribute to critical domain problems in theory and practice, and strengthen business intelligence in complex enterprise applications. The volume also explores challenges and directions for future research and development in the dialogue between academia and business."
This important text/reference presents a comprehensive review of techniques for taxonomy matching, discussing matching algorithms, analyzing matching systems, and comparing matching evaluation approaches. Different methods are investigated in accordance with the criteria of the Ontology Alignment Evaluation Initiative (OAEI). The text also highlights promising developments and innovative guidelines, to further motivate researchers and practitioners in the field. Topics and features: discusses the fundamentals and the latest developments in taxonomy matching, including the related fields of ontology matching and schema matching; reviews next-generation matching strategies, matching algorithms, matching systems, and OAEI campaigns, as well as alternative evaluations; examines how the latest techniques make use of different sources of background knowledge to enable precise matching between repositories; describes the theoretical background, state-of-the-art research, and practical real-world applications; covers the fields of dynamic taxonomies, personalized directories, catalog segmentation, and recommender systems. This stimulating book is an essential reference for practitioners engaged in data science and business intelligence, and for researchers specializing in taxonomy matching and semantic similarity assessment. The work is also suitable as a supplementary text for advanced undergraduate and postgraduate courses on information and metadata management.
This book provides awareness of different evolutionary methods used for automatic generation and optimization of test data in the field of software testing. While the book highlights on the foundations of software testing techniques, it also focuses on contemporary topics for research and development. This book covers the automated process of testing in different levels like unit level, integration level, performance level, evaluation of testing strategies, testing in security level, optimizing test cases using various algorithms, and controlling and monitoring the testing process etc. This book aids young researchers in the field of optimization of automated software testing, provides academics with knowledge on the emerging field of AI in software development, and supports universities, research centers, and industries in new projects using AI in software testing. Supports the advancement in the artificial intelligence used in software development; Advances knowledge on artificial intelligence based metaheuristic approach in software testing; Encourages innovation in traditional software testing field using recent artificial intelligence. *
This book presents how federated learning helps to understand and learn from user activity in Internet of Things (IoT) applications while protecting user privacy. The authors first show how federated learning provides a unique way to build personalized models using data without intruding on users' privacy. The authors then provide a comprehensive survey of state-of-the-art research on federated learning, giving the reader a general overview of the field. The book also investigates how a personalized federated learning framework is needed in cloud-edge architecture as well as in wireless-edge architecture for intelligent IoT applications. To cope with the heterogeneity issues in IoT environments, the book investigates emerging personalized federated learning methods that are able to mitigate the negative effects caused by heterogeneities in different aspects. The book provides case studies of IoT based human activity recognition to demonstrate the effectiveness of personalized federated learning for intelligent IoT applications, as well as multiple controller design and system analysis tools including model predictive control, linear matrix inequalities, optimal control, etc. This unique and complete co-design framework will benefit researchers, graduate students and engineers in the fields of control theory and engineering.
This book shows how open source intelligence can be a powerful tool for combating crime by linking local and global patterns to help understand how criminal activities are connected. Readers will encounter the latest advances in cutting-edge data mining, machine learning and predictive analytics combined with natural language processing and social network analysis to detect, disrupt, and neutralize cyber and physical threats. Chapters contain state-of-the-art social media analytics and open source intelligence research trends. This multidisciplinary volume will appeal to students, researchers, and professionals working in the fields of open source intelligence, cyber crime and social network analytics. Chapter Automated Text Analysis for Intelligence Purposes: A Psychological Operations Case Study is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
This book provides a comprehensive set of characterization, prediction, optimization, evaluation, and evolution techniques for a diagnosis system for fault isolation in large electronic systems. Readers with a background in electronics design or system engineering can use this book as a reference to derive insightful knowledge from data analysis and use this knowledge as guidance for designing reasoning-based diagnosis systems. Moreover, readers with a background in statistics or data analytics can use this book as a practical case study for adapting data mining and machine learning techniques to electronic system design and diagnosis. This book identifies the key challenges in reasoning-based, board-level diagnosis system design and presents the solutions and corresponding results that have emerged from leading-edge research in this domain. It covers topics ranging from highly accurate fault isolation, adaptive fault isolation, diagnosis-system robustness assessment, to system performance analysis and evaluation, knowledge discovery and knowledge transfer. With its emphasis on the above topics, the book provides an in-depth and broad view of reasoning-based fault diagnosis system design. * Explains and applies optimized techniques from the machine-learning domain to solve the fault diagnosis problem in the realm of electronic system design and manufacturing;* Demonstrates techniques based on industrial data and feedback from an actual manufacturing line;* Discusses practical problems, including diagnosis accuracy, diagnosis time cost, evaluation of diagnosis system, handling of missing syndromes in diagnosis, and need for fast diagnosis-system development.
This book presents Proceedings of the International Conference on Intelligent Systems and Networks (ICISN 2022), held at Hanoi in Vietnam. It includes peer reviewed high quality articles on Intelligent System and Networks. It brings together professionals and researchers in the area and presents a platform for exchange of ideas and to foster future collaboration. The topics covered in this book include- Foundations of Computer Science; Computational Intelligence Language and speech processing; Software Engineering Software development methods; Wireless Communications Signal Processing for Communications; Electronics track IoT and Sensor Systems Embedded Systems; etc.
This book provides a thorough summary of the means currently available to the investigators of Artificial Intelligence for making criminal behavior (both individual and collective) foreseeable, and for assisting their investigative capacities. The volume provides chapters on the introduction of artificial intelligence and machine learning suitable for an upper level undergraduate with exposure to mathematics and some programming skill or a graduate course. It also brings the latest research in Artificial Intelligence to life with its chapters on fascinating applications in the area of law enforcement, though much is also being accomplished in the fields of medicine and bioengineering. Individuals with a background in Artificial Intelligence will find the opening chapters to be an excellent refresher but the greatest excitement will likely be the law enforcement examples, for little has been done in that area. The editors have chosen to shine a bright light on law enforcement analytics utilizing artificial neural network technology to encourage other researchers to become involved in this very important and timely field of study. |
You may like...
Opinion Mining and Text Analytics on…
Pantea Keikhosrokiani, Moussa Pourya Asl
Hardcover
R9,276
Discovery Miles 92 760
|