Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Computing & IT > Applications of computing > Databases > Data mining
This book presents recent developments and research trends in the field of feature selection for data and pattern recognition, highlighting a number of latest advances. The field of feature selection is evolving constantly, providing numerous new algorithms, new solutions, and new applications. Some of the advances presented focus on theoretical approaches, introducing novel propositions highlighting and discussing properties of objects, and analysing the intricacies of processes and bounds on computational complexity, while others are dedicated to the specific requirements of application domains or the particularities of tasks waiting to be solved or improved. Divided into four parts - nature and representation of data; ranking and exploration of features; image, shape, motion, and audio detection and recognition; decision support systems, it is of great interest to a large section of researchers including students, professors and practitioners.
Ecologists and natural resource managers are charged with making complex management decisions in the face of a rapidly changing environment resulting from climate change, energy development, urban sprawl, invasive species and globalization. Advances in Geographic Information System (GIS) technology, digitization, online data availability, historic legacy datasets, remote sensors and the ability to collect data on animal movements via satellite and GPS have given rise to large, highly complex datasets. These datasets could be utilized for making critical management decisions, but are often "messy" and difficult to interpret. Basic artificial intelligence algorithms (i.e., machine learning) are powerful tools that are shaping the world and must be taken advantage of in the life sciences. In ecology, machine learning algorithms are critical to helping resource managers synthesize information to better understand complex ecological systems. Machine Learning has a wide variety of powerful applications, with three general uses that are of particular interest to ecologists: (1) data exploration to gain system knowledge and generate new hypotheses, (2) predicting ecological patterns in space and time, and (3) pattern recognition for ecological sampling. Machine learning can be used to make predictive assessments even when relationships between variables are poorly understood. When traditional techniques fail to capture the relationship between variables, effective use of machine learning can unearth and capture previously unattainable insights into an ecosystem's complexity. Currently, many ecologists do not utilize machine learning as a part of the scientific process. This volume highlights how machine learning techniques can complement the traditional methodologies currently applied in this field.
This book explores internet applications in which a crucial role is played by classification, such as spam filtering, recommender systems, malware detection, intrusion detection and sentiment analysis. It explains how such classification problems can be solved using various statistical and machine learning methods, including K nearest neighbours, Bayesian classifiers, the logit method, discriminant analysis, several kinds of artificial neural networks, support vector machines, classification trees and other kinds of rule-based methods, as well as random forests and other kinds of classifier ensembles. The book covers a wide range of available classification methods and their variants, not only those that have already been used in the considered kinds of applications, but also those that have the potential to be used in them in the future. The book is a valuable resource for post-graduate students and professionals alike.
'Emerging Technologies of Text Mining' provides the most recent technical information related to the computational models of the TM process.
Surveillance Technologies and Early Warning Systems: Data Mining Applications for Risk Detection has never been more important, as the research this book presents an alternative to conventional surveillance and risk assessment. This book is a multidisciplinary excursion comprised of data mining, early warning systems, information technologies and risk management and explores the intersection of these components in problematic domains. It offers the ability to apply the most modern techniques to age old problems allowing for increased effectiveness in the response to future, eminent, and present risk.
The book includes both invited and contributed chapters dealing with advanced methods and theoretical development for the analysis of social networks and applications in numerous disciplines. Some authors explore new trends related to network measures, multilevel networks and clustering on networks, while other contributions deepen the relationship among statistical methods for data mining and social network analysis. Along with the new methodological developments, the book offers interesting applications to a wide set of fields, ranging from the organizational and economic studies, collaboration and innovation, to the less usual field of poetry. In addition, the case studies are related to local context, showing how the substantive reasoning is fundamental in social network analysis. The list of authors includes both top scholars in the field of social networks and promising young researchers. All chapters passed a double blind review process followed by the guest editors. This edited volume will appeal to students, researchers and professionals.
This book highlights research in linking and mining data from across varied data sources. The authors focus on recent advances in this burgeoning field of multi-source data fusion, with an emphasis on exploratory and unsupervised data analysis, an area of increasing significance with the pace of growth of data vastly outpacing any chance of labeling them manually. The book looks at the underlying algorithms and technologies that facilitate the area within big data analytics, it covers their applications across domains such as smarter transportation, social media, fake news detection and enterprise search among others. This book enables readers to understand a spectrum of advances in this emerging area, and it will hopefully empower them to leverage and develop methods in multi-source data fusion and analytics with applications to a variety of scenarios. Includes advances on unsupervised, semi-supervised and supervised approaches to heterogeneous data linkage and fusion; Covers use cases of analytics over multi-view and heterogeneous data from across a variety of domains such as fake news, smarter transportation and social media, among others; Provides a high-level overview of advances in this emerging field and empowers the reader to explore novel applications and methodologies that would enrich the field.
This volume is focused on the emerging concept of Collaborative Innovation Networks (COINs). COINs are at the core of collaborative knowledge networks, distributed communities taking advantage of the wide connectivity and the support of communication technologies, spanning beyond the organizational perimeter of companies on a global scale. It includes the refereed conference papers from the 6th International Conference on COINs, June 8-11, 2016, in Rome, Italy. It includes papers for both application areas of COINs, (1) optimizing organizational creativity and performance, and (2) discovering and predicting new trends by identifying COINs on the Web through online social media analysis. Papers at COINs16 combine a wide range of interdisciplinary fields such as social network analysis, group dynamics, design and visualization, information systems and the psychology and sociality of collaboration, and intercultural analysis through the lens of online social media. They will cover most recent advances in areas from leadership and collaboration, trend prediction and data mining, to social competence and Internet communication.
This book contributes a basic framework for and specific insights into interdisciplinary connections between production, logistics, and traffic subsystems. The book is divided into two parts, the first of which presents an overview of interdisciplinarity in value-added networks and freight traffic. This includes an introduction to the topic and a description of an integrated framework of production, logistics, and traffic. Furthermore, it describes the barriers and challenges of interdisciplinary decision-making and project management. In turn, the second part presents domain-specific perspectives on interdisciplinary decision support, exploring domain-specific challenges of interdisciplinary interfaces and requirements for management methods and instruments from the standpoint of production management, logistics management, traffic management, and information technologies.
This book introduces research presented at the "International Conference on Artificial Intelligence: Advances and Applications-2019 (ICAIAA 2019)," a two-day conference and workshop bringing together leading academicians, researchers as well as students to share their experiences and findings on all aspects of engineering applications of artificial intelligence. The book covers research in the areas of artificial intelligence, machine learning, and deep learning applications in health care, agriculture, business and security. It also includes research in core concepts of computer networks, intelligent system design and deployment, real-time systems, WSN, sensors and sensor nodes, SDN and NFV. As such it is a valuable resource for students, academics and practitioners in industry working on AI applications.
This book comprises the best deliberations with the theme "Machine Learning Technologies and Applications" in the "International Conference on Advances in Computer Engineering and Communication Systems (ICACECS 2020)," organized by the Department of Computer Science and Engineering, VNR Vignana Jyothi Institute of Engineering and Technology. The book provides insights into the recent trends and developments in the field of computer science with a special focus on the machine learning and big data. The book focuses on advanced topics in artificial intelligence, machine learning, data mining and big data computing, cloud computing, Internet of things, distributed computing and smart systems.
This book puts in one place and in accessible form Richard Berk's most recent work on forecasts of re-offending by individuals already in criminal justice custody. Using machine learning statistical procedures trained on very large datasets, an explicit introduction of the relative costs of forecasting errors as the forecasts are constructed, and an emphasis on maximizing forecasting accuracy, the author shows how his decades of research on the topic improves forecasts of risk. Criminal justice risk forecasts anticipate the future behavior of specified individuals, rather than "predictive policing" for locations in time and space, which is a very different enterprise that uses different data different data analysis tools. The audience for this book includes graduate students and researchers in the social sciences, and data analysts in criminal justice agencies. Formal mathematics is used only as necessary or in concert with more intuitive explanations.
This book provides an overview of predictive methods demonstrated by open source software modeling with Rattle (R') and WEKA. Knowledge management involves application of human knowledge (epistemology) with the technological advances of our current society (computer systems) and big data, both in terms of collecting data and in analyzing it. We see three types of analytic tools. Descriptive analytics focus on reports of what has happened. Predictive analytics extend statistical and/or artificial intelligence to provide forecasting capability. It also includes classification modeling. Prescriptive analytics applies quantitative models to optimize systems, or at least to identify improved systems. Data mining includes descriptive and predictive modeling. Operations research includes all three. This book focuses on prescriptive analytics. The book seeks to provide simple explanations and demonstration of some descriptive tools. This second edition provides more examples of big data impact, updates the content on visualization, clarifies some points, and expands coverage of association rules and cluster analysis. Chapter 1 gives an overview in the context of knowledge management. Chapter 2 discusses some basic data types. Chapter 3 covers fundamentals time series modeling tools, and Chapter 4 provides demonstration of multiple regression modeling. Chapter 5 demonstrates regression tree modeling. Chapter 6 presents autoregressive/integrated/moving average models, as well as GARCH models. Chapter 7 covers the set of data mining tools used in classification, to include special variants support vector machines, random forests, and boosting. Models are demonstrated using business related data. The style of the book is intended to be descriptive, seeking to explain how methods work, with some citations, but without deep scholarly reference. The data sets and software are all selected for widespread availability and access by any reader with computer links.
This book describes efforts to improve subject-independent automated classification techniques using a better feature extraction method and a more efficient model of classification. It evaluates three popular saliency criteria for feature selection, showing that they share common limitations, including time-consuming and subjective manual de-facto standard practice, and that existing automated efforts have been predominantly used for subject dependent setting. It then proposes a novel approach for anomaly detection, demonstrating its effectiveness and accuracy for automated classification of biomedical data, and arguing its applicability to a wider range of unsupervised machine learning applications in subject-independent settings.
The series, Contemporary Perspectives on Data Mining, is composed of blind refereed scholarly research methods and applications of data mining. This series will be targeted both at the academic community, as well as the business practitioner. Data mining seeks to discover knowledge from vast amounts of data with the use of statistical and mathematical techniques. The knowledge is extracted form this data by examining the patterns of the data, whether they be associations of groups or things, predictions, sequential relationships between time order events or natural groups. Data mining applications are seen in finance (banking, brokerage, insurance), marketing (customer relationships, retailing, logistics, travel), as well as in manufacturing, health care, fraud detection, home-land security, and law enforcement.
This book, written by an international team of prominent authors, gathers the latest developments in mobile technologies for the acquisition, management, analysis and sharing of Volunteered Geographic Information (VGI) in the context of Earth observation. It is divided into three parts, the first of which presents case studies on the implementation of VGI for Earth observation, discusses the characteristics of volunteers' engagement in relation with their expertise and motivation, analyzes the tasks they are called upon to perform, and examines the available tools for developing VGI. In turn, the second part introduces readers to essential methods, techniques and algorithms used to develop mobile information systems based on VGI for distinct Earth observation tasks, while the last part focuses on the drawbacks and limitations of VGI with regard to the above-mentioned tasks and proposes innovative methods and techniques to help overcome them. Given its breadth of coverage, the book offers a comprehensive, practice-oriented reference guide for researchers and practitioners in the field of geo-information management.
This PALO volume constitutes the Proceedings of the 19th Asia Pacific Symposium on Intelligent and Evolutionary Systems (IES 2015), held in Bangkok, Thailand, November 22-25, 2015. The IES series of conference is an annual event that was initiated back in 1997 in Canberra, Australia. IES aims to bring together researchers from countries of the Asian Pacific Rim, in the fields of intelligent systems and evolutionary computation, to exchange ideas, present recent results and discuss possible collaborations. Researchers beyond Asian Pacific Rim countries are also welcome and encouraged to participate. The theme for IES 2015 is "Transforming Big Data into Knowledge and Technological Breakthroughs". The host organization for IES 2015 is the School of Information Technology (SIT), King Mongkut's University of Technology Thonburi (KMUTT), and it is technically sponsored by the International Neural Network Society (INNS). IES 2015 is collocated with three other conferences; namely, The 6th International Conference on Computational Systems-Biology and Bioinformatics 2015 (CSBio 2015), The 7th International Conference on Advances in Information Technology 2015 (IAIT 2015) and The 10th International Conference on e-Business 2015 (iNCEB 2015), as a major part of series of events to celebrate the SIT 20th anniversary and the KMUTT 55th anniversary.
This book contains some selected papers from the International Conference on Extreme Learning Machine 2015, which was held in Hangzhou, China, December 15-17, 2015. This conference brought together researchers and engineers to share and exchange R&D experience on both theoretical studies and practical applications of the Extreme Learning Machine (ELM) technique and brain learning. This book covers theories, algorithms ad applications of ELM. It gives readers a glance of the most recent advances of ELM.
This book provides a comprehensive overview of different biomedical data types, including both clinical and genomic data. Thorough explanations enable readers to explore key topics ranging from electrocardiograms to Big Data health mining and EEG analysis techniques. Each chapter offers a summary of the field and a sample analysis. Also covered are telehealth infrastructure, healthcare information association rules, methods for mass spectrometry imaging, environmental biodiversity, and the global nonlinear fitness function for protein structures. Diseases are addressed in chapters on functional annotation of lncRNAs in human disease, metabolomics characterization of human diseases, disease risk factors using SNP data and Bayesian methods, and imaging informatics for diagnostic imaging marker selection. With the exploding accumulation of Electronic Health Records (EHRs), there is an urgent need for computer-aided analysis of heterogeneous biomedical datasets. Biomedical data is notorious for its diversified scales, dimensions, and volumes, and requires interdisciplinary technologies for visual illustration and digital characterization. Various computer programs and servers have been developed for these purposes by both theoreticians and engineers. This book is an essential reference for investigating the tools available for analyzing heterogeneous biomedical data. It is designed for professionals, researchers, and practitioners in biomedical engineering, diagnostics, medical electronics, and related industries.
The use of game theoretic techniques is playing an increasingly important role in the network design domain. Understanding the background, concepts, and principles in using game theory approaches is necessary for engineers in network design. Game Theory Applications in Network Design provides the basic idea of game theory and the fundamental understanding of game theoretic interactions among network entities. The material in this book also covers recent advances and open issues, offering game theoretic solutions for specific network design issues. This publication will benefit students, educators, research strategists, scientists, researchers, and engineers in the field of network design.
This book provides a review of advanced topics relating to the theory, research, analysis and implementation in the context of big data platforms and their applications, with a focus on methods, techniques, and performance evaluation. The explosive growth in the volume, speed, and variety of data being produced every day requires a continuous increase in the processing speeds of servers and of entire network infrastructures, as well as new resource management models. This poses significant challenges (and provides striking development opportunities) for data intensive and high-performance computing, i.e., how to efficiently turn extremely large datasets into valuable information and meaningful knowledge. The task of context data management is further complicated by the variety of sources such data derives from, resulting in different data formats, with varying storage, transformation, delivery, and archiving requirements. At the same time rapid responses are needed for real-time applications. With the emergence of cloud infrastructures, achieving highly scalable data management in such contexts is a critical problem, as the overall application performance is highly dependent on the properties of the data management service.
This book discusses the fusion of mobile and WiFi network data with semantic technologies and diverse context sources for offering semantically enriched context-aware services in the telecommunications domain. It presents the OpenMobileNetwork as a platform for providing estimated and semantically enriched mobile and WiFi network topology data using the principles of Linked Data. This platform is based on the OpenMobileNetwork Ontology consisting of a set of network context ontology facets that describe mobile network cells as well as WiFi access points from a topological perspective and geographically relate their coverage areas to other context sources. The book also introduces Linked Crowdsourced Data and its corresponding Context Data Cloud Ontology, which is a crowdsourced dataset combining static location data with dynamic context information. Linked Crowdsourced Data supports the OpenMobileNetwork by providing the necessary context data richness for more sophisticated semantically enriched context-aware services. Various application scenarios and proof of concept services as well as two separate evaluations are part of the book. As the usability of the provided services closely depends on the quality of the approximated network topologies, it compares the estimated positions for mobile network cells within the OpenMobileNetwork to a small set of real-world cell positions. The results prove that context-aware services based on the OpenMobileNetwork rely on a solid and accurate network topology dataset. The book also evaluates the performance of the exemplary Semantic Tracking as well as Semantic Geocoding services, verifying the applicability and added value of semantically enriched mobile and WiFi network data.
The widespread use of XML in business and scientific databases has prompted the development of methodologies, techniques, and systems for effectively managing and analyzing XML data. This has increasingly attracted the attention of different research communities, including database, information retrieval, pattern recognition, and machine learning, from which several proposals have been offered to address problems in XML data management and knowledge discovery. XML Data Mining: Models, Methods, and Applications aims to collect knowledge from experts of database, information retrieval, machine learning, and knowledge management communities in developing models, methods, and systems for XML data mining. This book addresses key issues and challenges in XML data mining, offering insights into the various existing solutions and best practices for modeling, processing, analyzing XML data, and for evaluating performance of XML data mining algorithms and systems.
This book provides a systematic review of many advanced techniques to support the analysis of large collections of documents, ranging from the elementary to the profound, covering all the aspects of the visualization of text documents. Particularly, we start by introducing the fundamental concept of information visualization and visual analysis, followed by a brief survey of the field of text visualization and commonly used data models for converting document into a structured form for visualization. Then we introduce the key visualization techniques including visualizing document similarity, content, sentiments, as well as text corpus exploration system in details with concrete examples in the rest of the book.
This book offers an original and broad exploration of the fundamental methods in Clustering and Combinatorial Data Analysis, presenting new formulations and ideas within this very active field. With extensive introductions, formal and mathematical developments and real case studies, this book provides readers with a deeper understanding of the mutual relationships between these methods, which are clearly expressed with respect to three facets: logical, combinatorial and statistical. Using relational mathematical representation, all types of data structures can be handled in precise and unified ways which the author highlights in three stages: Clustering a set of descriptive attributes Clustering a set of objects or a set of object categories Establishing correspondence between these two dual clusterings Tools for interpreting the reasons of a given cluster or clustering are also included. Foundations and Methods in Combinatorial and Statistical Data Analysis and Clustering will be a valuable resource for students and researchers who are interested in the areas of Data Analysis, Clustering, Data Mining and Knowledge Discovery. |
You may like...
New Opportunities for Sentiment Analysis…
Aakanksha Sharaff, G. R. Sinha, …
Hardcover
R7,022
Discovery Miles 70 220
Opinion Mining and Text Analytics on…
Pantea Keikhosrokiani, Moussa Pourya Asl
Hardcover
R9,808
Discovery Miles 98 080
Contemporary Perspectives in Data Mining
Kenneth D. Lawrence, Ronald K. Klimberg
Hardcover
R2,748
Discovery Miles 27 480
Transforming Businesses With Bitcoin…
Dharmendra Singh Rajput, Ramjeevan Singh Thakur, …
Hardcover
R6,259
Discovery Miles 62 590
Big Data - Concepts, Methodologies…
Information Reso Management Association
Hardcover
R18,647
Discovery Miles 186 470
|