Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Computing & IT > Applications of computing > Databases > Data mining
Opinion Mining and Text Analytics on Literary Works and Social Media introduces the use of artificial intelligence and big data analytics techniques which can apply opinion mining and text analytics on literary works and social media. This book focuses on theories, method and approaches in which data analytic techniques can be used to analyze data from social media, literary books, novels, news, texts, and beyond to provide a meaningful pattern. The subject area of this book is multidisciplinary; related to data science, artificial intelligence, social science and humanities, and literature. This is an essential resource for scholars, Students and lecturers from various fields of data science, artificial intelligence, social science and humanities, and literature, university libraries, new agencies, and many more.
This updated compendium provides the linear algebra background necessary to understand and develop linear algebra applications in data mining and machine learning.Basic knowledge and advanced new topics (spectral theory, singular values, decomposition techniques for matrices, tensors and multidimensional arrays) are presented together with several applications of linear algebra (k-means clustering, biplots, least square approximations, dimensionality reduction techniques, tensors and multidimensional arrays).The useful reference text includes more than 600 exercises and supplements, many with completed solutions and MATLAB applications.The volume benefits professionals, academics, researchers and graduate students in the fields of pattern recognition/image analysis, AI, machine learning and databases.
The emergence of new technologies within the industrial revolution has transformed businesses to a new socio-digital era. In this new era, businesses are concerned with collecting data on customer needs, behaviors, and preferences for driving effective customer engagement and product development, as well as for crucial decision making. However, the ever-shifting behaviors of consumers provide many challenges for businesses to pinpoint the wants and needs of their audience. Consumer Behavior Change and Data Analytics in the Socio-Digital Era focuses on the concepts, theories, and analytical techniques to track consumer behavior change. It provides multidisciplinary research and practice focusing on social and behavioral analytics to track consumer behavior shifts and improve decision making among businesses. Covering topics such as consumer sentiment analysis, emotional intelligence, and online purchase decision making, this premier reference source is a timely resource for business executives, entrepreneurs, data analysts, marketers, advertisers, government officials, social media professionals, libraries, students and educators of higher education, researchers, and academicians.
The success of many companies through the assistance of bitcoin proves that technology continually dominates and transforms how economics operate. However, a deeper, more conceptual understanding of how these technologies work to identify innovation opportunities and how to successfully thrive in an increasingly competitive environment is needed for the entrepreneurs of tomorrow. Transforming Businesses With Bitcoin Mining and Blockchain Applications provides innovative insights into IT infrastructure and emerging trends in the realm of digital business technologies. This publication analyzes and extracts information from Bitcoin networks and provides the necessary steps to designing open blockchain. Highlighting topics that include financial markets, risk management, and smart technologies, the research contained within the title is ideal for entrepreneurs, business professionals, managers, executives, academicians, researchers, and business students.
Multinational organizations have begun to realize that sentiment mining plays an important role for decision making and market strategy. The revolutionary growth of digital marketing not only changes the market game, but also brings forth new opportunities for skilled professionals and expertise. Currently, the technologies are rapidly changing, and artificial intelligence (AI) and machine learning are contributing as game-changing technologies. These are not only trending but are also increasingly popular among data scientists and data analysts. New Opportunities for Sentiment Analysis and Information Processing provides interdisciplinary research in information retrieval and sentiment analysis including studies on extracting sentiments from textual data, sentiment visualization-based dimensionality reduction for multiple features, and deep learning-based multi-domain sentiment extraction. The book also optimizes techniques used for sentiment identification and examines applications of sentiment analysis and emotion detection. Covering such topics as communication networks, natural language processing, and semantic analysis, this book is essential for data scientists, data analysts, IT specialists, scientists, researchers, academicians, and students.
Based on current literature and cutting-edge advances in the machine learning field, there are four algorithms whose usage in new application domains must be explored: neural networks, rule induction algorithms, tree-based algorithms, and density-based algorithms. A number of machine learning related algorithms have been derived from these four algorithms. Consequently, they represent excellent underlying methods for extracting hidden knowledge from unstructured data, as essential data mining tasks. Implementation of Machine Learning Algorithms Using Control-Flow and Dataflow Paradigms presents widely used data-mining algorithms and explains their advantages and disadvantages, their mathematical treatment, applications, energy efficient implementations, and more. It presents research of energy efficient accelerators for machine learning algorithms. Covering topics such as control-flow implementation, approximate computing, and decision tree algorithms, this book is an essential resource for computer scientists, engineers, students and educators of higher education, researchers, and academicians.
In today's digital world, the huge amount of data being generated is unstructured, messy, and chaotic in nature. Dealing with such data, and attempting to unfold the meaningful information, can be a challenging task. Feature engineering is a process to transform such data into a suitable form that better assists with interpretation and visualization. Through this method, the transformed data is more transparent to the machine learning models, which in turn causes better prediction and analysis of results. Data science is crucial for the data scientist to assess the trade-offs of their decisions regarding the effectiveness of the machine learning model implemented. Investigating the demand in this area today and in the future is a necessity. The Handbook of Research on Automated Feature Engineering and Advanced Applications in Data Science provides an in-depth analysis on both the theoretical and the latest empirical research findings on how features can be extracted and transformed from raw data. The chapters will introduce feature engineering and the recent concepts, methods, and applications with the use of various data types, as well as examine the latest machine learning applications on the data. While highlighting topics such as detection, tracking, selection techniques, and prediction models using data science, this book is ideally intended for research scholars, big data scientists, project developers, data analysts, and computer scientists along with practitioners, researchers, academicians, and students interested in feature engineering and its impact on data.
Multimedia represents information in novel and varied formats. One of the most prevalent examples of continuous media is video. Extracting underlying data from these videos can be an arduous task. From video indexing, surveillance, and mining, complex computational applications are required to process this data. Intelligent Analysis of Multimedia Information is a pivotal reference source for the latest scholarly research on the implementation of innovative techniques to a broad spectrum of multimedia applications by presenting emerging methods in continuous media processing and manipulation. This book offers a fresh perspective for students and researchers of information technology, media professionals, and programmers.
This book constitutes the refereed post-conference proceedings of the Fourth IFIP TC 12 International Conference on Computational Intelligence in Data Science, ICCIDS 2021, held in Chennai, India, in March 2021. The 20 revised full papers presented were carefully reviewed and selected from 75 submissions. The papers cover topics such as computational intelligence for text analysis; computational intelligence for image and video analysis; blockchain and data science.
The effective application of knowledge management principles has proven to be beneficial for modern organizations. When utilized in the academic community, these frameworks can enhance the value and quality of research initiatives. Enhancing Academic Research With Knowledge Management Principles is a pivotal reference source for the latest research on implementing theoretical frameworks of information management in the context of academia and universities. Featuring extensive coverage on relevant areas such as data mining, organizational and academic culture, this publication is an ideal resource for researchers, academics, practitioners, professionals, and students.
Fuzzy cognitive maps (FCMs) have gained popularity in the scientific community due to their capabilities in modeling and decision making for complex problems.This book presents a novel algorithm called glassoFCM to enable automatic learning of FCM models from data. Specifically, glassoFCM is a combination of two methods, glasso (a technique originated from machine learning) for data modeling and FCM simulation for decision making. The book outlines that glassoFCM elaborates simple, accurate, and more stable models that are easy to interpret and offer meaningful decisions. The research results presented are based on an investigation related to a real-world business intelligence problem to evaluate characteristics that influence employee work readiness.Finally, this book provides readers with a step-by-step guide of the 'fcm' package to execute and visualize their policies and decisions through the FCM simulation process.
Internet usage has become a normal and essential aspect of everyday life. Due to the immense amount of information available on the web, it has become obligatory to find ways to sift through and categorize the overload of data while removing redundant material. Collaborative Filtering Using Data Mining and Analysis evaluates the latest patterns and trending topics in the utilization of data mining tools and filtering practices. Featuring emergent research and optimization techniques in the areas of opinion mining, text mining, and sentiment analysis, as well as their various applications, this book is an essential reference source for researchers and engineers interested in collaborative filtering.
Across numerous industries in modern society, there is a constant need to gather precise and relevant data efficiently and quickly. As such, it is imperative to research new methods and approaches to increase productivity in these areas. Next-Generation Information Retrieval and Knowledge Resources Management is a key source on the latest advancements in multidisciplinary research methods and applications and examines effective techniques for managing and utilizing information resources. Featuring extensive coverage across a range of relevant perspectives and topics, such as knowledge discovery, spatial indexing, and data mining, this book is ideally designed for researchers, graduate students, academics, and industry professionals seeking ways to optimize knowledge management processes.
The series, Contemporary Perspectives on Data Mining, is composed of blind refereed scholarly research methods and applications of data mining. This series will be targeted both at the academic community, as well as the business practitioner. Data mining seeks to discover knowledge from vast amounts of data with the use of statistical and mathematical techniques. The knowledge is extracted from this data by examining the patterns of the data, whether they be associations of groups or things, predictions, sequential relationships between time order events or natural groups. Data mining applications are in marketing (customer loyalty, identifying profitable customers, instore promotions, e-commerce populations); in business (teaching data mining, efficiency of the Chinese automobile industry, moderate asset allocation funds); and techniques (veterinary predictive models, data integrity in the cloud, irregular pattern detection in a mobility network and road safety modeling.)
"Big data" has become a commonly used term to describe large-scale and complex data sets which are difficult to manage and analyze using standard data management methodologies. With applications across sectors and fields of study, the implementation and possible uses of big data are limitless. The Handbook of Research on Big Data Management and Applications explores emerging research on the ever-growing field of big data and facilitates further knowledge development on methods for handling and interpreting large data sets. Providing multi-disciplinary perspectives fueled by international research, this publication is designed for use by data analysts, IT professionals, researchers, and graduate-level students interested in learning about the latest trends and concepts in big data.
This book highlights new trends and challenges in research on agents and the new digital and knowledge economy. It includes papers on business process management, agent-based modeling and simulation, and anthropic-oriented computing that were originally presented at the 15th International KES Conference on Agents and Multi-Agent Systems: Technologies and Applications (KES-AMSTA 2021), being held as a Virtual Conference in June 14-16, 2021. The respective papers cover topics such as software agents, multi-agent systems, agent modeling, mobile and cloud computing, big data analysis, business intelligence, artificial intelligence, social systems, computer embedded systems, and nature-inspired manufacturing, all of which contribute to the modern digital economy.
This book provides an overview of fake news detection, both through a variety of tutorial-style survey articles that capture advancements in the field from various facets and in a somewhat unique direction through expert perspectives from various disciplines. The approach is based on the idea that advancing the frontier on data science approaches for fake news is an interdisciplinary effort, and that perspectives from domain experts are crucial to shape the next generation of methods and tools. The fake news challenge cuts across a number of data science subfields such as graph analytics, mining of spatio-temporal data, information retrieval, natural language processing, computer vision and image processing, to name a few. This book will present a number of tutorial-style surveys that summarize a range of recent work in the field. In a unique feature, this book includes perspective notes from experts in disciplines such as linguistics, anthropology, medicine and politics that will help to shape the next generation of data science research in fake news. The main target groups of this book are academic and industrial researchers working in the area of data science, and with interests in devising and applying data science technologies for fake news detection. For young researchers such as PhD students, a review of data science work on fake news is provided, equipping them with enough know-how to start engaging in research within the area. For experienced researchers, the detailed descriptions of approaches will enable them to take seasoned choices in identifying promising directions for future research.
This book presents Proceedings of the International Conference on Intelligent Systems and Networks (ICISN 2021), held at Hanoi in Vietnam. It includes peer-reviewed high-quality articles on intelligent system and networks. It brings together professionals and researchers in the area and presents a platform for exchange of ideas and to foster future collaboration. The topics covered in this book include-foundations of computer science; computational intelligence language and speech processing; software engineering software development methods; wireless communications signal processing for communications; electronics track IoT and sensor systems embedded systems; etc. |
You may like...
Data Science and Internet of Things…
Giancarlo Fortino, Antonio Liotta, …
Hardcover
R3,937
Discovery Miles 39 370
Developing Churn Models Using Data…
Goran Klepac, Robert Kopal, …
Hardcover
R4,860
Discovery Miles 48 600
Evolutionary Data Clustering: Algorithms…
Ibrahim Aljarah, Hossam Faris, …
Hardcover
R4,905
Discovery Miles 49 050
Provenance in Data Science - From Data…
Leslie F Sikos, Oshani W. Seneviratne, …
Hardcover
R3,616
Discovery Miles 36 160
|