![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > Applications of computing > Databases > Data mining
This PALO volume constitutes the Proceedings of the 19th Asia Pacific Symposium on Intelligent and Evolutionary Systems (IES 2015), held in Bangkok, Thailand, November 22-25, 2015. The IES series of conference is an annual event that was initiated back in 1997 in Canberra, Australia. IES aims to bring together researchers from countries of the Asian Pacific Rim, in the fields of intelligent systems and evolutionary computation, to exchange ideas, present recent results and discuss possible collaborations. Researchers beyond Asian Pacific Rim countries are also welcome and encouraged to participate. The theme for IES 2015 is "Transforming Big Data into Knowledge and Technological Breakthroughs". The host organization for IES 2015 is the School of Information Technology (SIT), King Mongkut's University of Technology Thonburi (KMUTT), and it is technically sponsored by the International Neural Network Society (INNS). IES 2015 is collocated with three other conferences; namely, The 6th International Conference on Computational Systems-Biology and Bioinformatics 2015 (CSBio 2015), The 7th International Conference on Advances in Information Technology 2015 (IAIT 2015) and The 10th International Conference on e-Business 2015 (iNCEB 2015), as a major part of series of events to celebrate the SIT 20th anniversary and the KMUTT 55th anniversary.
This book contains some selected papers from the International Conference on Extreme Learning Machine 2015, which was held in Hangzhou, China, December 15-17, 2015. This conference brought together researchers and engineers to share and exchange R&D experience on both theoretical studies and practical applications of the Extreme Learning Machine (ELM) technique and brain learning. This book covers theories, algorithms ad applications of ELM. It gives readers a glance of the most recent advances of ELM.
Sequential data from Web server logs, online transaction logs, and performance measurements is collected each day. This sequential data is a valuable source of information, as it allows individuals to search for a particular value or event and also facilitates analysis of the frequency of certain events or sets of related events. Finding patterns in sequences is of utmost importance in many areas of science, engineering, and business scenarios. Pattern Discovery Using Sequence Data Mining: Applications and Studies provides a comprehensive view of sequence mining techniques and presents current research and case studies in pattern discovery in sequential data by researchers and practitioners. This research identifies industry applications introduced by various sequence mining approaches.
This book describes efforts to improve subject-independent automated classification techniques using a better feature extraction method and a more efficient model of classification. It evaluates three popular saliency criteria for feature selection, showing that they share common limitations, including time-consuming and subjective manual de-facto standard practice, and that existing automated efforts have been predominantly used for subject dependent setting. It then proposes a novel approach for anomaly detection, demonstrating its effectiveness and accuracy for automated classification of biomedical data, and arguing its applicability to a wider range of unsupervised machine learning applications in subject-independent settings.
This book highlights research in linking and mining data from across varied data sources. The authors focus on recent advances in this burgeoning field of multi-source data fusion, with an emphasis on exploratory and unsupervised data analysis, an area of increasing significance with the pace of growth of data vastly outpacing any chance of labeling them manually. The book looks at the underlying algorithms and technologies that facilitate the area within big data analytics, it covers their applications across domains such as smarter transportation, social media, fake news detection and enterprise search among others. This book enables readers to understand a spectrum of advances in this emerging area, and it will hopefully empower them to leverage and develop methods in multi-source data fusion and analytics with applications to a variety of scenarios. Includes advances on unsupervised, semi-supervised and supervised approaches to heterogeneous data linkage and fusion; Covers use cases of analytics over multi-view and heterogeneous data from across a variety of domains such as fake news, smarter transportation and social media, among others; Provides a high-level overview of advances in this emerging field and empowers the reader to explore novel applications and methodologies that would enrich the field.
The use of game theoretic techniques is playing an increasingly important role in the network design domain. Understanding the background, concepts, and principles in using game theory approaches is necessary for engineers in network design. Game Theory Applications in Network Design provides the basic idea of game theory and the fundamental understanding of game theoretic interactions among network entities. The material in this book also covers recent advances and open issues, offering game theoretic solutions for specific network design issues. This publication will benefit students, educators, research strategists, scientists, researchers, and engineers in the field of network design.
The widespread use of XML in business and scientific databases has prompted the development of methodologies, techniques, and systems for effectively managing and analyzing XML data. This has increasingly attracted the attention of different research communities, including database, information retrieval, pattern recognition, and machine learning, from which several proposals have been offered to address problems in XML data management and knowledge discovery. XML Data Mining: Models, Methods, and Applications aims to collect knowledge from experts of database, information retrieval, machine learning, and knowledge management communities in developing models, methods, and systems for XML data mining. This book addresses key issues and challenges in XML data mining, offering insights into the various existing solutions and best practices for modeling, processing, analyzing XML data, and for evaluating performance of XML data mining algorithms and systems.
What is text mining, and how can it be used? What relevance do these methods have to everyday work in information science and the digital humanities? How does one develop competences in text mining? Working with Text provides a series of cross-disciplinary perspectives on text mining and its applications. As text mining raises legal and ethical issues, the legal background of text mining and the responsibilities of the engineer are discussed in this book. Chapters provide an introduction to the use of the popular GATE text mining package with data drawn from social media, the use of text mining to support semantic search, the development of an authority system to support content tagging, and recent techniques in automatic language evaluation. Focused studies describe text mining on historical texts, automated indexing using constrained vocabularies, and the use of natural language processing to explore the climate science literature. Interviews are included that offer a glimpse into the real-life experience of working within commercial and academic text mining.
The work presented in this book is a combination of theoretical advancements of big data analysis, cloud computing, and their potential applications in scientific computing. The theoretical advancements are supported with illustrative examples and its applications in handling real life problems. The applications are mostly undertaken from real life situations. The book discusses major issues pertaining to big data analysis using computational intelligence techniques and some issues of cloud computing. An elaborate bibliography is provided at the end of each chapter. The material in this book includes concepts, figures, graphs, and tables to guide researchers in the area of big data analysis and cloud computing.
This book introduces Meaningful Purposive Interaction Analysis (MPIA) theory, which combines social network analysis (SNA) with latent semantic analysis (LSA) to help create and analyse a meaningful learning landscape from the digital traces left by a learning community in the co-construction of knowledge. The hybrid algorithm is implemented in the statistical programming language and environment R, introducing packages which capture - through matrix algebra - elements of learners' work with more knowledgeable others and resourceful content artefacts. The book provides comprehensive package-by-package application examples, and code samples that guide the reader through the MPIA model to show how the MPIA landscape can be constructed and the learner's journey mapped and analysed. This building block application will allow the reader to progress to using and building analytics to guide students and support decision-making in learning.
This book provides a comprehensive overview of different biomedical data types, including both clinical and genomic data. Thorough explanations enable readers to explore key topics ranging from electrocardiograms to Big Data health mining and EEG analysis techniques. Each chapter offers a summary of the field and a sample analysis. Also covered are telehealth infrastructure, healthcare information association rules, methods for mass spectrometry imaging, environmental biodiversity, and the global nonlinear fitness function for protein structures. Diseases are addressed in chapters on functional annotation of lncRNAs in human disease, metabolomics characterization of human diseases, disease risk factors using SNP data and Bayesian methods, and imaging informatics for diagnostic imaging marker selection. With the exploding accumulation of Electronic Health Records (EHRs), there is an urgent need for computer-aided analysis of heterogeneous biomedical datasets. Biomedical data is notorious for its diversified scales, dimensions, and volumes, and requires interdisciplinary technologies for visual illustration and digital characterization. Various computer programs and servers have been developed for these purposes by both theoreticians and engineers. This book is an essential reference for investigating the tools available for analyzing heterogeneous biomedical data. It is designed for professionals, researchers, and practitioners in biomedical engineering, diagnostics, medical electronics, and related industries.
This book, written by an international team of prominent authors, gathers the latest developments in mobile technologies for the acquisition, management, analysis and sharing of Volunteered Geographic Information (VGI) in the context of Earth observation. It is divided into three parts, the first of which presents case studies on the implementation of VGI for Earth observation, discusses the characteristics of volunteers' engagement in relation with their expertise and motivation, analyzes the tasks they are called upon to perform, and examines the available tools for developing VGI. In turn, the second part introduces readers to essential methods, techniques and algorithms used to develop mobile information systems based on VGI for distinct Earth observation tasks, while the last part focuses on the drawbacks and limitations of VGI with regard to the above-mentioned tasks and proposes innovative methods and techniques to help overcome them. Given its breadth of coverage, the book offers a comprehensive, practice-oriented reference guide for researchers and practitioners in the field of geo-information management.
The ideas introduced in this book explore the relationships among rule based systems, machine learning and big data. Rule based systems are seen as a special type of expert systems, which can be built by using expert knowledge or learning from real data. The book focuses on the development and evaluation of rule based systems in terms of accuracy, efficiency and interpretability. In particular, a unified framework for building rule based systems, which consists of the operations of rule generation, rule simplification and rule representation, is presented. Each of these operations is detailed using specific methods or techniques. In addition, this book also presents some ensemble learning frameworks for building ensemble rule based systems.
This book provides a systematic review of many advanced techniques to support the analysis of large collections of documents, ranging from the elementary to the profound, covering all the aspects of the visualization of text documents. Particularly, we start by introducing the fundamental concept of information visualization and visual analysis, followed by a brief survey of the field of text visualization and commonly used data models for converting document into a structured form for visualization. Then we introduce the key visualization techniques including visualizing document similarity, content, sentiments, as well as text corpus exploration system in details with concrete examples in the rest of the book.
This thesis focuses on the problem of optimizing the quality of network multimedia services. This problem spans multiple domains, from subjective perception of multimedia quality to computer networks management. The work done in this thesis approaches the problem at different levels, developing methods for modeling the subjective perception of quality based on objectively measurable parameters of the multimedia coding process as well as the transport over computer networks. The modeling of subjective perception is motivated by work done in psychophysics, while using Machine Learning techniques to map network conditions to the human perception of video services. Furthermore, the work develops models for efficient control of multimedia systems operating in dynamic networked environments with the goal of delivering optimized Quality of Experience. Overall this thesis delivers a set of methods for monitoring and optimizing the quality of multimedia services that adapt to the dynamic environment of computer networks in which they operate.
This thesis covers a diverse set of topics related to space-based gravitational wave detectors such as the Laser Interferometer Space Antenna (LISA). The core of the thesis is devoted to the preprocessing of the interferometric link data for a LISA constellation, specifically developing optimal Kalman filters to reduce arm length noise due to clock noise. The approach is to apply Kalman filters of increasing complexity to make optimal estimates of relevant quantities such as constellation arm length, relative clock drift, and Doppler frequencies based on the available measurement data. Depending on the complexity of the filter and the simulated data, these Kalman filter estimates can provide up to a few orders of magnitude improvement over simpler estimators. While the basic concept of the LISA measurement (Time Delay Interferometry) was worked out some time ago, this work brings a level of rigor to the processing of the constellation-level data products. The thesis concludes with some topics related to the eLISA such as a new class of phenomenological waveforms for extreme mass-ratio inspiral sources (EMRIs, one of the main source for eLISA), an octahedral space-based GW detector that does not require drag-free test masses, and some efficient template-search algorithms for the case of relatively high SNR signals.
This book offers an original and broad exploration of the fundamental methods in Clustering and Combinatorial Data Analysis, presenting new formulations and ideas within this very active field. With extensive introductions, formal and mathematical developments and real case studies, this book provides readers with a deeper understanding of the mutual relationships between these methods, which are clearly expressed with respect to three facets: logical, combinatorial and statistical. Using relational mathematical representation, all types of data structures can be handled in precise and unified ways which the author highlights in three stages: Clustering a set of descriptive attributes Clustering a set of objects or a set of object categories Establishing correspondence between these two dual clusterings Tools for interpreting the reasons of a given cluster or clustering are also included. Foundations and Methods in Combinatorial and Statistical Data Analysis and Clustering will be a valuable resource for students and researchers who are interested in the areas of Data Analysis, Clustering, Data Mining and Knowledge Discovery.
As the applications of data mining, the non-trivial extraction of implicit information in a data set, have expanded in recent years, so has the need for techniques that are tolerable to imprecision, uncertainty, and approximation. Intelligent Soft Computation and Evolving Data Mining: Integrating Advanced Technologies is a compendium that addresses this need. It integrates contrasting techniques of conventional hard computing and soft computing to exploit the tolerance for imprecision, uncertainty, partial truth, and approximation to achieve tractability, robustness and low-cost solution. This book provides a reference to researchers, practitioners, and students in both soft computing and data mining communities, forming a foundation for the development of the field.
This book discusses the fusion of mobile and WiFi network data with semantic technologies and diverse context sources for offering semantically enriched context-aware services in the telecommunications domain. It presents the OpenMobileNetwork as a platform for providing estimated and semantically enriched mobile and WiFi network topology data using the principles of Linked Data. This platform is based on the OpenMobileNetwork Ontology consisting of a set of network context ontology facets that describe mobile network cells as well as WiFi access points from a topological perspective and geographically relate their coverage areas to other context sources. The book also introduces Linked Crowdsourced Data and its corresponding Context Data Cloud Ontology, which is a crowdsourced dataset combining static location data with dynamic context information. Linked Crowdsourced Data supports the OpenMobileNetwork by providing the necessary context data richness for more sophisticated semantically enriched context-aware services. Various application scenarios and proof of concept services as well as two separate evaluations are part of the book. As the usability of the provided services closely depends on the quality of the approximated network topologies, it compares the estimated positions for mobile network cells within the OpenMobileNetwork to a small set of real-world cell positions. The results prove that context-aware services based on the OpenMobileNetwork rely on a solid and accurate network topology dataset. The book also evaluates the performance of the exemplary Semantic Tracking as well as Semantic Geocoding services, verifying the applicability and added value of semantically enriched mobile and WiFi network data.
In this work we plan to revise the main techniques for enumeration algorithms and to show four examples of enumeration algorithms that can be applied to efficiently deal with some biological problems modelled by using biological networks: enumerating central and peripheral nodes of a network, enumerating stories, enumerating paths or cycles, and enumerating bubbles. Notice that the corresponding computational problems we define are of more general interest and our results hold in the case of arbitrary graphs. Enumerating all the most and less central vertices in a network according to their eccentricity is an example of an enumeration problem whose solutions are polynomial and can be listed in polynomial time, very often in linear or almost linear time in practice. Enumerating stories, i.e. all maximal directed acyclic subgraphs of a graph G whose sources and targets belong to a predefined subset of the vertices, is on the other hand an example of an enumeration problem with an exponential number of solutions, that can be solved by using a non trivial brute-force approach. Given a metabolic network, each individual story should explain how some interesting metabolites are derived from some others through a chain of reactions, by keeping all alternative pathways between sources and targets. Enumerating cycles or paths in an undirected graph, such as a protein-protein interaction undirected network, is an example of an enumeration problem in which all the solutions can be listed through an optimal algorithm, i.e. the time required to list all the solutions is dominated by the time to read the graph plus the time required to print all of them. By extending this result to directed graphs, it would be possible to deal more efficiently with feedback loops and signed paths analysis in signed or interaction directed graphs, such as gene regulatory networks. Finally, enumerating mouths or bubbles with a source s in a directed graph, that is enumerating all the two vertex-disjoint directed paths between the source s and all the possible targets, is an example of an enumeration problem in which all the solutions can be listed through a linear delay algorithm, meaning that the delay between any two consecutive solutions is linear, by turning the problem into a constrained cycle enumeration problem. Such patterns, in a de Bruijn graph representation of the reads obtained by sequencing, are related to polymorphisms in DNA- or RNA-seq data.
This book provides fresh insights into the cutting edge of multimedia data mining, reflecting how the research focus has shifted towards networked social communities, mobile devices and sensors. The work describes how the history of multimedia data processing can be viewed as a sequence of disruptive innovations. Across the chapters, the discussion covers the practical frameworks, libraries, and open source software that enable the development of ground-breaking research into practical applications. Features: reviews how innovations in mobile, social, cognitive, cloud and organic based computing impacts upon the development of multimedia data mining; provides practical details on implementing the technology for solving real-world problems; includes chapters devoted to privacy issues in multimedia social environments and large-scale biometric data processing; covers content and concept based multimedia search and advanced algorithms for multimedia data representation, processing and visualization.
This book highlights recent research advances in unsupervised learning using natural computing techniques such as artificial neural networks, evolutionary algorithms, swarm intelligence, artificial immune systems, artificial life, quantum computing, DNA computing, and others. The book also includes information on the use of natural computing techniques for unsupervised learning tasks. It features several trending topics, such as big data scalability, wireless network analysis, engineering optimization, social media, and complex network analytics. It shows how these applications have triggered a number of new natural computing techniques to improve the performance of unsupervised learning methods. With this book, the readers can easily capture new advances in this area with systematic understanding of the scope in depth. Readers can rapidly explore new methods and new applications at the junction between natural computing and unsupervised learning. Includes advances on unsupervised learning using natural computing techniques Reports on topics in emerging areas such as evolutionary multi-objective unsupervised learning Features natural computing techniques such as evolutionary multi-objective algorithms and many-objective swarm intelligence algorithms
'Data Mining Patterns' gives an overall view of the recent solutions for mining and covers mining new kinds of patterns, mining patterns under constraints, new kinds of complex data and real-world applications of these concepts. |
You may like...
CRISC Certified in Risk and Information…
Peter Gregory, Dawn Dunkerley, …
Hardcover
R964
Discovery Miles 9 640
Cambridge International A Level…
Brian Gillinder, Brian Sargent
Paperback
R1,311
Discovery Miles 13 110
Certification and Security in E-Services…
Enrico Nardelli, Sabina Posadziejewski, …
Hardcover
R2,812
Discovery Miles 28 120
|