![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > Applications of computing > Databases > Data mining
Across numerous industries in modern society, there is a constant need to gather precise and relevant data efficiently and quickly. As such, it is imperative to research new methods and approaches to increase productivity in these areas. Next-Generation Information Retrieval and Knowledge Resources Management is a key source on the latest advancements in multidisciplinary research methods and applications and examines effective techniques for managing and utilizing information resources. Featuring extensive coverage across a range of relevant perspectives and topics, such as knowledge discovery, spatial indexing, and data mining, this book is ideally designed for researchers, graduate students, academics, and industry professionals seeking ways to optimize knowledge management processes.
Data Mining for Bioinformatics Applications provides valuable information on the data mining methods have been widely used for solving real bioinformatics problems, including problem definition, data collection, data preprocessing, modeling, and validation. The text uses an example-based method to illustrate how to apply data mining techniques to solve real bioinformatics problems, containing 45 bioinformatics problems that have been investigated in recent research. For each example, the entire data mining process is described, ranging from data preprocessing to modeling and result validation.
"Big data" has become a commonly used term to describe large-scale and complex data sets which are difficult to manage and analyze using standard data management methodologies. With applications across sectors and fields of study, the implementation and possible uses of big data are limitless. The Handbook of Research on Big Data Management and Applications explores emerging research on the ever-growing field of big data and facilitates further knowledge development on methods for handling and interpreting large data sets. Providing multi-disciplinary perspectives fueled by international research, this publication is designed for use by data analysts, IT professionals, researchers, and graduate-level students interested in learning about the latest trends and concepts in big data.
With at least 40% new or updated content since the last edition, "Clinical Decision Support," 2nd Edition explores the crucial new motivating factors poised to accelerate Clinical Decision Support (CDS) adoption. This book is mostly focused on the US perspective because of initiatives driving EHR adoption, the articulation of 'meaningful use', and new policy attention in process including the Office of the National Coordinator for Health Information Technology (ONC) and the Center for Medicare and Medicaid Services (CMS). A few chapters focus on the broader international perspective. "Clinical Decision Support," 2nd Edition explores the technology, sources of knowledge, evolution of successful forms of CDS, and organizational and policy perspectives surrounding CDS. Exploring a roadmap for CDS, with all its efficacy benefits
including reduced errors, improved quality, and cost savings, as
well as the still substantial roadblocks needed to be overcome by
policy-makers, clinicians, and clinical informatics experts, the
field is poised anew on the brink of broad adoption. "Clinical
Decision Support," 2nd Edition provides an updated and pragmatic
view of the methodological processes and implementation
considerations. This book also considers advanced technologies and
architectures, standards, and cooperative activities needed on a
societal basis for truly large-scale adoption.
The series, Contemporary Perspectives on Data Mining, is composed of blind refereed scholarly research methods and applications of data mining. This series will be targeted both at the academic community, as well as the business practitioner. Data mining seeks to discover knowledge from vast amounts of data with the use of statistical and mathematical techniques. The knowledge is extracted from this data by examining the patterns of the data, whether they be associations of groups or things, predictions, sequential relationships between time order events or natural groups. Data mining applications are in marketing (customer loyalty, identifying profitable customers, instore promotions, e-commerce populations); in business (teaching data mining, efficiency of the Chinese automobile industry, moderate asset allocation funds); and techniques (veterinary predictive models, data integrity in the cloud, irregular pattern detection in a mobility network and road safety modeling.)
Whether you are brand new to data mining or working on your tenth predictive analytics project, "Commercial Data Mining" will be there for you as an accessible reference outlining the entire process and related themes. In this book, you'll learn that your organization does not need a huge volume of data or a Fortune 500 budget to generate business using existing information assets. Expert author David Nettleton guides you through the process from beginning to end and covers everything from business objectives to data sources, and selection to analysis and predictive modeling. "Commercial Data Mining" includes case studies and practical
examples from Nettleton's more than 20 years of commercial
experience. Real-world cases covering customer loyalty,
cross-selling, and audience prediction in industries including
insurance, banking, and media illustrate the concepts and
techniques explained throughout the book.
Websites are a central part of today's business world; however, with the vast amount of information that constantly changes and the frequency of required updates, this can come at a high cost to modern businesses. Web Data Mining and the Development of Knowledge-Based Decision Support Systems is a key reference source on decision support systems in view of end user accessibility and identifies methods for extraction and analysis of useful information from web documents. Featuring extensive coverage across a range of relevant perspectives and topics, such as semantic web, machine learning, and expert systems, this book is ideally designed for web developers, internet users, online application developers, researchers, and faculty.
The concept of digital risk, which has become ubiquitous in the media, sustains a number of myths and beliefs about the digital world. This book explores the opposite view of these ideologies by focusing on digital risks as perceived by actors in their respective contexts. Perceptions and Analysis of Digital Risks identifies the different types of risks that concern actors and actually impact their daily lives, within education or various socio-professional environments. It provides an analysis of the strategies used by the latter to deal with these risks as they conduct their activities; thus making it possible to characterize the digital cultures and, more broadly, the informational cultures at work. This book offers many avenues for action in terms of educating the younger generations, training teachers and leaders, and mediating risks.
Churn prediction, recognition, and mitigation have become essential topics in various industries. As a means for forecasting and manageing risk, further research in this field can greatly assist companies in making informed decisions based on future possible scenarios. Developing Churn Models Using Data Mining Techniques and Social Network Analysis provides an in-depth analysis of attrition modeling relevant to business planning and management. Through its insightful and detailed explanation of best practices, tools, and theory surrounding churn prediction and the integration of analytics tools, this publication is especially relevant to managers, data specialists, business analysts, academicians, and upper-level students.
Uncovering and analyzing data associated with the current business environment is essential in maintaining a competitive edge. As such, making informed decisions based on this data is crucial to managers across industries. Integration of Data Mining in Business Intelligence Systems investigates the incorporation of data mining into business technologies used in the decision making process. Emphasizing cutting-edge research and relevant concepts in data discovery and analysis, this book is a comprehensive reference source for policymakers, academicians, researchers, students, technology developers, and professionals interested in the application of data mining techniques and practices in business information systems.
Conventional computational methods, and even the latest soft computing paradigms, often fall short in their ability to offer solutions to many real-world problems due to uncertainty, imprecision, and circumstantial data. Hybrid intelligent computing is a paradigm that addresses these issues to a considerable extent. The Handbook of Research on Advanced Research on Hybrid Intelligent Techniques and Applications highlights the latest research on various issues relating to the hybridization of artificial intelligence, practical applications, and best methods for implementation. Focusing on key interdisciplinary computational intelligence research dealing with soft computing techniques, pattern mining, data analysis, and computer vision, this book is relevant to the research needs of academics, IT specialists, and graduate-level students.
This is an applied handbook for the application of data mining techniques in the CRM framework. It combines a technical and a business perspective to cover the needs of business users who are looking for a practical guide on data mining. It focuses on Customer Segmentation and presents guidelines for the development of actionable segmentation schemes. By using non-technical language it guides readers through all the phases of the data mining process.
As data mining is one of the most rapidly changing disciplines with new technologies and concepts continually under development, academicians, researchers, and professionals of the discipline need access to the most current information about the concepts, issues, trends, and technologies in this emerging field.""Social Implications of Data Mining and Information Privacy: Interdisciplinary Frameworks and Solutions"" serves as a critical source of information related to emerging issues and solutions in data mining and the influence of political and socioeconomic factors. An immense breakthrough, this essential reference provides concise coverage of emerging issues and technological solutions in data mining, and covers problems with applicable laws governing such issues.
Organizations that utilize data mining techniques can amass valuable information on clients habits and preferences, behavior patterns, purchase patterns, sales patterns, and stock forecasts. Ethical Data Mining Applications for Socio-Economic Development provides an overview of data mining techniques under an ethical lens, investigating developments in research and best practices, while evaluating experimental cases to identify potential ethical dilemmas in the information and communications technology sector. The cases and research in this book will benefit scientists, researchers, and practitioners working in the field of data mining, data warehousing, and database management to ensure that data obtained through web-based investigations is properly handled at all organizational levels. This book is part of the Advances in Data Mining and Database Management series collection.
This book brings all of the elements of data mining together in a
single volume, saving the reader the time and expense of making
multiple purchases. It consolidates both introductory and advanced
topics, thereby covering the gamut of data mining and machine
learning tactics ? from data integration and pre-processing, to
fundamental algorithms, to optimization techniques and web mining
methodology.
As the applications of data mining, the non-trivial extraction of implicit information in a data set, have expanded in recent years, so has the need for techniques that are tolerable to imprecision, uncertainty, and approximation. Intelligent Soft Computation and Evolving Data Mining: Integrating Advanced Technologies is a compendium that addresses this need. It integrates contrasting techniques of conventional hard computing and soft computing to exploit the tolerance for imprecision, uncertainty, partial truth, and approximation to achieve tractability, robustness and low-cost solution. This book provides a reference to researchers, practitioners, and students in both soft computing and data mining communities, forming a foundation for the development of the field.
The series, Contemporary Perspectives on Data Mining, is composed of blind refereed scholarly research methods and applications of data mining. This series will be targeted both at the academic community, as well as the business practitioner. Data mining seeks to discover knowledge from vast amounts of data with the use of statistical and mathematical techniques. The knowledge is extracted from this data by examining the patterns of the data, whether they be associations of groups or things, predictions, sequential relationships between time order events or natural groups. Data mining applications are in finance (banking, brokerage, and insurance), marketing (customer relationships, retailing, logistics, and travel), as well as in manufacturing, health care, fraud detection, homeland security, and law enforcement.
Research and development surrounding the use of data queries is receiving increased attention from computer scientists and data specialists alike. Through the use of query technology, large volumes of data in databases can be retrieved, and information systems built based on databases can support problem solving and decision making across industries. The Handbook of Research on Innovative Database Query Processing Techniques focuses on the growing topic of database query processing methods, technologies, and applications. Aimed at providing an all-inclusive reference source of technologies and practices in advanced database query systems, this book investigates various techniques, including database and XML queries, spatiotemporal data queries, big data queries, metadata queries, and applications of database query systems. This comprehensive handbook is a necessary resource for students, IT professionals, data analysts, and academicians interested in uncovering the latest methods for using queries as a means to extract information from databases. This all-inclusive handbook includes the latest research on topics pertaining to information retrieval, data extraction, data management, design and development of database queries, and database and XM queries.
The field of data mining is receiving significant attention in today's information-rich society, where data is available from different sources and formats, in large volumes, and no longer constitutes a bottleneck for knowledge acquisition. This rich information has paved the way for novel areas of research, particularly in the crime data analysis realm. Data Mining Trends and Applications in Criminal Science and Investigations presents scientific concepts and frameworks of data mining and analytics implementation and uses across various domains, such as public safety, criminal investigations, intrusion detection, crime scene analysis, and suspect modeling. Exploring the diverse ways that data is revolutionizing the field of criminal science, this publication meets the research needs of law enforcement professionals, data analysts, investigators, researchers, and graduate-level students.
Cluster or co-cluster analyses are important tools in a variety of scientific areas. The introduction of this book presents a state of the art of already well-established, as well as more recent methods of co-clustering. The authors mainly deal with the two-mode partitioning under different approaches, but pay particular attention to a probabilistic approach. Chapter 1 concerns clustering in general and the model-based clustering in particular. The authors briefly review the classical clustering methods and focus on the mixture model. They present and discuss the use of different mixtures adapted to different types of data. The algorithms used are described and related works with different classical methods are presented and commented upon. This chapter is useful in tackling the problem of co-clustering under the mixture approach. Chapter 2 is devoted to the latent block model proposed in the mixture approach context. The authors discuss this model in detail and present its interest regarding co-clustering. Various algorithms are presented in a general context. Chapter 3 focuses on binary and categorical data. It presents, in detail, the appropriated latent block mixture models. Variants of these models and algorithms are presented and illustrated using examples. Chapter 4 focuses on contingency data. Mutual information, phi-squared and model-based co-clustering are studied. Models, algorithms and connections among different approaches are described and illustrated. Chapter 5 presents the case of continuous data. In the same way, the different approaches used in the previous chapters are extended to this situation. Contents 1. Cluster Analysis. 2. Model-Based Co-Clustering. 3. Co-Clustering of Binary and Categorical Data. 4. Co-Clustering of Contingency Tables. 5. Co-Clustering of Continuous Data. About the Authors Gerard Govaert is Professor at the University of Technology of Compiegne, France. He is also a member of the CNRS Laboratory Heudiasyc (Heuristic and diagnostic of complex systems). His research interests include latent structure modeling, model selection, model-based cluster analysis, block clustering and statistical pattern recognition. He is one of the authors of the MIXMOD (MIXtureMODelling) software. Mohamed Nadif is Professor at the University of Paris-Descartes, France, where he is a member of LIPADE (Paris Descartes computer science laboratory) in the Mathematics and Computer Science department. His research interests include machine learning, data mining, model-based cluster analysis, co-clustering, factorization and data analysis. Cluster Analysis is an important tool in a variety of scientific areas. Chapter 1 briefly presents a state of the art of already well-established as well more recent methods. The hierarchical, partitioning and fuzzy approaches will be discussed amongst others. The authors review the difficulty of these classical methods in tackling the high dimensionality, sparsity and scalability. Chapter 2 discusses the interests of coclustering, presenting different approaches and defining a co-cluster. The authors focus on co-clustering as a simultaneous clustering and discuss the cases of binary, continuous and co-occurrence data. The criteria and algorithms are described and illustrated on simulated and real data. Chapter 3 considers co-clustering as a model-based co-clustering. A latent block model is defined for different kinds of data. The estimation of parameters and co-clustering is tackled under two approaches: maximum likelihood and classification maximum likelihood. Hard and soft algorithms are described and applied on simulated and real data. Chapter 4 considers co-clustering as a matrix approximation. The trifactorization approach is considered and algorithms based on update rules are described. Links with numerical and probabilistic approaches are established. A combination of algorithms are proposed and evaluated on simulated and real data. Chapter 5 considers a co-clustering or bi-clustering as the search for coherent co-clusters in biological terms or the extraction of co-clusters under conditions. Classical algorithms will be described and evaluated on simulated and real data. Different indices to evaluate the quality of coclusters are noted and used in numerical experiments.
One of the infinite rewards to continuously advancing technology is an increased ease and precision in organizational techniques. Online data collection and online instruments are vital ways to electronically measure and assess organizational areas relevant to management, leadership, and human research development.Online Instruments, Data Collection, and Electronic Measurements: Organizational Advancements aims to assist researchers in both understanding and utilizing online data collection by providing methodological knowledge related to online research, and by presenting information about the empirical quality, the availability, and the location of specific online instruments. This book provides a strong focus on organizational leadership instruments while combining them with practical and ethical issues associated with online data collection. Such a combination makes this a unique contribution to the field. |
You may like...
Implementation of Machine Learning…
Veljko Milutinovi, Nenad Mitic, …
Hardcover
R6,648
Discovery Miles 66 480
Big Data and Smart Service Systems
Xiwei Liu, Rangachari Anand, …
Hardcover
|