![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > Applications of computing > Databases > Data mining
With the growing use of information technology and the recent advances in web systems, the amount of data available to users has increased exponentially. Thus, there is a critical need to understand the content of the data. As a result, data-mining has become a popular research topic in recent years for the treatment of the "data rich and information poor" syndrome. In this carefully edited volume a theoretical foundation as well as important new directions for data-mining research are presented. It brings together a set of well respected data mining theoreticians and researchers with practical data mining experiences. The presented theories will give data mining practitioners a scientific perspective in data mining and thus provide more insight into their problems, and the provided new data mining topics can be expected to stimulate further research in these important directions.
The field of data mining has made significant and far-reaching advances over the past three decades.Because of its potential power for solving complex problems, data mining has been successfully applied to diverse areas such as business, engineering, social media, and biological science. Many of these applications search for patterns in complex structural information. In biomedicine for example, modeling complex biological systems requires linking knowledge across many levels of science, from genes to disease. Further, the data characteristics of the problems have also grown from static to dynamic and spatiotemporal, complete to incomplete, and centralized to distributed, and grow in their scope and size (this is known as "big data"). The effective integration of big data for decision-making also requires privacy preservation. The contributions to this monograph summarize the advances of data mining in the respective fields. This volume consists of nine chapters that address subjects ranging from mining data from opinion, spatiotemporal databases, discriminative subgraph patterns, path knowledge discovery, social media, and privacy issues to the subject of computation reduction via binary matrix factorization."
This book focuses on different facets of flight data analysis, including the basic goals, methods, and implementation techniques. As mass flight data possesses the typical characteristics of time series, the time series analysis methods and their application for flight data have been illustrated from several aspects, such as data filtering, data extension, feature optimization, similarity search, trend monitoring, fault diagnosis, and parameter prediction, etc. An intelligent information-processing platform for flight data has been established to assist in aircraft condition monitoring, training evaluation and scientific maintenance. The book will serve as a reference resource for people working in aviation management and maintenance, as well as researchers and engineers in the fields of data analysis and data mining.
This book explores community dynamics within social media. Using Wikipedia as an example, the volume explores communities that rely upon commons-based peer production. Fundamental theoretical principles spanning such domains as organizational configurations, leadership roles, and social evolutionary theory are developed. In the context of Wikipedia, these theories explain how a functional elite of highly productive editors has emerged and why they are responsible for a majority of the content. It explains how the elite shapes the project and how this group tends to become stable and increasingly influential over time. Wikipedia has developed a new and resilient social hierarchy, an adhocracy, which combines features of traditional and new, online, social organizations. The book presents a set of practical approaches for using these theories in real-world practice. This work fundamentally changes the way we think about social media leadership and evolution, emphasizing the crucial contributions of leadership, of elite social roles, and of group global structure to the overall success and stability of large social media projects. Written in an accessible and direct style, the book will be of interest to academics as well as professionals with an interest in social media and commons-based peer production processes.
This book presents the combined peer-reviewed proceedings of the tenth International Symposium on Intelligent Distributed Computing (IDC'2016), which was held in Paris, France from October 10th to 12th, 2016. The 23 contributions address a range of topics related to theory and application of intelligent distributed computing, including: Intelligent Distributed Agent-Based Systems, Ambient Intelligence and Social Networks, Computational Sustainability, Intelligent Distributed Knowledge Representation and Processing, Smart Networks, Networked Intelligence and Intelligent Distributed Applications, amongst others.
Welcome to the 6th International Conference on Open Source Systems of the IFIP Working Group 2. 13. This year was the ?rst time this international conf- ence was held in North America. We had a large number of high-quality papers, highlyrelevantpanelsandworkshops, acontinuationofthepopulardoctoralc- sortium, and multiple distinguished invited speakers. The success of OSS 2010 was only possible because an Organizing Committee, a Program Committee, Workshop and Doctoral Committees, and authors of research manuscripts from over 25 countries contributed their time and interest to OSS 2010. In the spirit of the communities we study, you self-organized, volunteered, and contributed to this important research forum studying free, libre, open source software and systems. We thank you Despite our modest success, we have room to improve and grow our conf- ence and community. At OSS 2010 we saw little or no participation from large portions of the world, including Latin America, Africa, China, and India. But opportunitiestoexpandarepossible. InJapan, weseeahotspotofparticipation led by Tetsuo Noda and his colleagues, both with full-paper submissions and a workshopon"OpenSourcePolicyandPromotionofITIndustries inEastAsia. " The location of OSS 2011 in Salvador, Brazil, will hopefully result in signi?cant participation from researchers in Brazil - already a strong user of OSS - and otherSouthAmericancountries. UndertheleadershipofMeganSquire, Publicity Chair, we recruited RegionalPublicity Co-chairscovering Japan (Tetsuo Noda), Africa(SulaymanSowe), the MiddleEastandSouthAsia(FaheenAhmed), R- sia and Eastern Europe (Alexey Khoroshilov), Western Europe (Yeliz Eseryel), UK and Ireland (Andrea Capiluppi), and the Nordic countries (Bj] orn Lundell)."
The present book outlines a new approach to possibilistic clustering in which the sought clustering structure of the set of objects is based directly on the formal definition of fuzzy cluster and the possibilistic memberships are determined directly from the values of the pairwise similarity of objects. The proposed approach can be used for solving different classification problems. Here, some techniques that might be useful at this purpose are outlined, including a methodology for constructing a set of labeled objects for a semi-supervised clustering algorithm, a methodology for reducing analyzed attribute space dimensionality and a methods for asymmetric data processing. Moreover, a technique for constructing a subset of the most appropriate alternatives for a set of weak fuzzy preference relations, which are defined on a universe of alternatives, is described in detail, and a method for rapidly prototyping the Mamdani s fuzzy inference systems is introduced. This book addresses engineers, scientists, professors, students and post-graduate students, who are interested in and work with fuzzy clustering and its applications
This book reports on advanced theories and cutting-edge applications in the field of soft computing. The individual chapters, written by leading researchers, are based on contributions presented during the 4th World Conference on Soft Computing, held May 25-27, 2014, in Berkeley. The book covers a wealth of key topics in soft computing, focusing on both fundamental aspects and applications. The former include fuzzy mathematics, type-2 fuzzy sets, evolutionary-based optimization, aggregation and neural networks, while the latter include soft computing in data analysis, image processing, decision-making, classification, series prediction, economics, control, and modeling. By providing readers with a timely, authoritative view on the field, and by discussing thought-provoking developments and challenges, the book will foster new research directions in the diverse areas of soft computing.
This book explores the concepts of data mining and data warehousing, a promising and flourishing frontier in database systems, and presents a broad, yet in-depth overview of the field of data mining. Data mining is a multidisciplinary field, drawing work from areas including database technology, artificial intelligence, machine learning, neural networks, statistics, pattern recognition, knowledge based systems, knowledge acquisition, information retrieval, high performance computing and data visualization.
The authors focus on the mathematical models and methods that support most data mining applications and solution techniques.
This book presents an overview of techniques for discovering high-utility patterns (patterns with a high importance) in data. It introduces the main types of high-utility patterns, as well as the theory and core algorithms for high-utility pattern mining, and describes recent advances, applications, open-source software, and research opportunities. It also discusses several types of discrete data, including customer transaction data and sequential data. The book consists of twelve chapters, seven of which are surveys presenting the main subfields of high-utility pattern mining, including itemset mining, sequential pattern mining, big data pattern mining, metaheuristic-based approaches, privacy-preserving pattern mining, and pattern visualization. The remaining five chapters describe key techniques and applications, such as discovering concise representations and regular patterns.
Given its effective techniques and theories from various sources and fields, data science is playing a vital role in transportation research and the consequences of the inevitable switch to electronic vehicles. This fundamental insight provides a step towards the solution of this important challenge. Data Science and Simulation in Transportation Research highlights entirely new and detailed spatial-temporal micro-simulation methodologies for human mobility and the emerging dynamics of our society. Bringing together novel ideas grounded in big data from various data mining and transportation science sources, this book is an essential tool for professionals, students, and researchers in the fields of transportation research and data mining.
This book focuses on new and emerging data mining solutions that offer a greater level of transparency than existing solutions. Transparent data mining solutions with desirable properties (e.g. effective, fully automatic, scalable) are covered in the book. Experimental findings of transparent solutions are tailored to different domain experts, and experimental metrics for evaluating algorithmic transparency are presented. The book also discusses societal effects of black box vs. transparent approaches to data mining, as well as real-world use cases for these approaches.As algorithms increasingly support different aspects of modern life, a greater level of transparency is sorely needed, not least because discrimination and biases have to be avoided. With contributions from domain experts, this book provides an overview of an emerging area of data mining that has profound societal consequences, and provides the technical background to for readers to contribute to the field or to put existing approaches to practical use.
The present text aims at helping the reader to maximize the reuse of information. Topics covered include tools and services for creating simple, rich, and reusable knowledge representations to explore strategies for integrating this knowledge into legacy systems. The reuse and integration are essential concepts that must be enforced to avoid duplicating the effort and reinventing the wheel each time in the same field. This problem is investigated from different perspectives. in organizations, high volumes of data from different sources form a big threat for filtering out the information for effective decision making. the reader will be informed of the most recent advances in information reuse and integration.
Text mining applications have experienced tremendous advances because of web 2.0 and social networking applications. Recent advances in hardware and software technology have lead to a number of unique scenarios where text mining algorithms are learned. Mining Text Data introduces an important niche in the text analytics field, and is an edited volume contributed by leading international researchers and practitioners focused on social networks & data mining. This book contains a wide swath in topics across social networks & data mining. Each chapter contains a comprehensive survey including the key research content on the topic, and the future directions of research in the field. There is a special focus on Text Embedded with Heterogeneous and Multimedia Data which makes the mining process much more challenging. A number of methods have been designed such as transfer learning and cross-lingual mining for such cases. Mining Text Data simplifies the content, so that advanced-level students, practitioners and researchers in computer science can benefit from this book. Academic and corporate libraries, as well as ACM, IEEE, and Management Science focused on information security, electronic commerce, databases, data mining, machine learning, and statistics are the primary buyers for this reference book.
This proceedings volume introduces recent work on the storage, retrieval and visualization of spatial Big Data, data-intensive geospatial computing and related data quality issues. Further, it addresses traditional topics such as multi-scale spatial data representations, knowledge discovery, space-time modeling, and geological applications. Spatial analysis and data mining are increasingly facing the challenges of Big Data as more and more types of crowd sourcing spatial data are used in GIScience, such as movement trajectories, cellular phone calls, and social networks. In order to effectively manage these massive data collections, new methods and algorithms are called for. The book highlights state-of-the-art advances in the handling and application of spatial data, especially spatial Big Data, offering a cutting-edge reference guide for graduate students, researchers and practitioners in the field of GIScience.
Data mining is a very active research area with many successful real-world app- cations. It consists of a set of concepts and methods used to extract interesting or useful knowledge (or patterns) from real-world datasets, providing valuable support for decision making in industry, business, government, and science. Although there are already many types of data mining algorithms available in the literature, it is still dif cult for users to choose the best possible data mining algorithm for their particular data mining problem. In addition, data mining al- rithms have been manually designed; therefore they incorporate human biases and preferences. This book proposes a new approach to the design of data mining algorithms. - stead of relying on the slow and ad hoc process of manual algorithm design, this book proposes systematically automating the design of data mining algorithms with an evolutionary computation approach. More precisely, we propose a genetic p- gramming system (a type of evolutionary computation method that evolves c- puter programs) to automate the design of rule induction algorithms, a type of cl- si cation method that discovers a set of classi cation rules from data. We focus on genetic programming in this book because it is the paradigmatic type of machine learning method for automating the generation of programs and because it has the advantage of performing a global search in the space of candidate solutions (data mining algorithms in our case), but in principle other types of search methods for this task could be investigated in the future.
"Incomplete Information System and Rough Set Theory: Models and Attribute Reductions" covers theoretical study of generalizations of rough set model in various incomplete information systems. It discusses not only the regular attributes but also the criteria in the incomplete information systems. Based on different types of rough set models, the book presents the practical approaches to compute several reducts in terms of these models. The book is intended for researchers and postgraduate students in machine learning, data mining and knowledge discovery, especially for those who are working in rough set theory, and granular computing. Dr. Xibei Yang is a lecturer at the School of Computer Science and Engineering, Jiangsu University of Science and Technology, China; Jingyu Yang is a professor at the School of Computer Science, Nanjing University of Science and Technology, China.
This unique text/reference describes an exciting and novel approach to supercomputing in the DataFlow paradigm. The major advantages and applications of this approach are clearly described, and a detailed explanation of the programming model is provided using simple yet effective examples. The work is developed from a series of lecture courses taught by the authors in more than 40 universities across more than 20 countries, and from research carried out by Maxeler Technologies, Inc. Topics and features: presents a thorough introduction to DataFlow supercomputing for big data problems; reviews the latest research on the DataFlow architecture and its applications; introduces a new method for the rapid handling of real-world challenges involving large datasets; provides a case study on the use of the new approach to accelerate the Cooley-Tukey algorithm on a DataFlow machine; includes a step-by-step guide to the web-based integrated development environment WebIDE.
"Introduction to Data Mining" presents fundamental concepts and algorithms for those learning data mining for the first time. Each concept is explored thoroughly and supported with numerous examples. The text requires only a modest background in mathematics. Each major topic is organized into two chapters, beginning with basic concepts that provide necessary background for understanding each data mining technique, followed by more advanced concepts and algorithms.
Data Mining introduces in clear and simple ways how to use existing data mining methods to obtain effective solutions for a variety of management and engineering design problems. Data Mining is organised into two parts: the first provides a focused introduction to data mining and the second goes into greater depth on subjects such as customer analysis. It covers almost all managerial activities of a company, including: * supply chain design, * product development, * manufacturing system design, * product quality control, and * preservation of privacy. Incorporating recent developments of data mining that have made it possible to deal with management and engineering design problems with greater efficiency and efficacy, Data Mining presents a number of state-of-the-art topics. It will be an informative source of information for researchers, but will also be a useful reference work for industrial and managerial practitioners. |
You may like...
Intelligent Analysis of Multimedia…
Siddhartha Bhattacharyya, Hrishikesh Bhaumik, …
Hardcover
R5,617
Discovery Miles 56 170
Opinion Mining and Text Analytics on…
Pantea Keikhosrokiani, Moussa Pourya Asl
Hardcover
R9,276
Discovery Miles 92 760
|