![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > Applications of computing > Databases > Data mining
This book addresses the topic of exploiting enterprise-linked data with a particular focus on knowledge construction and accessibility within enterprises. It identifies the gaps between the requirements of enterprise knowledge consumption and "standard" data consuming technologies by analysing real-world use cases, and proposes the enterprise knowledge graph to fill such gaps. It provides concrete guidelines for effectively deploying linked-data graphs within and across business organizations. It is divided into three parts, focusing on the key technologies for constructing, understanding and employing knowledge graphs. Part 1 introduces basic background information and technologies, and presents a simple architecture to elucidate the main phases and tasks required during the lifecycle of knowledge graphs. Part 2 focuses on technical aspects; it starts with state-of-the art knowledge-graph construction approaches, and then discusses exploration and exploitation techniques as well as advanced question-answering topics concerning knowledge graphs. Lastly, Part 3 demonstrates examples of successful knowledge graph applications in the media industry, healthcare and cultural heritage, and offers conclusions and future visions.
This book describes analytical techniques for optimizing knowledge acquisition, processing, and propagation, especially in the contexts of cyber-infrastructure and big data. Further, it presents easy-to-use analytical models of knowledge-related processes and their applications. The need for such methods stems from the fact that, when we have to decide where to place sensors, or which algorithm to use for processing the data-we mostly rely on experts' opinions. As a result, the selected knowledge-related methods are often far from ideal. To make better selections, it is necessary to first create easy-to-use models of knowledge-related processes. This is especially important for big data, where traditional numerical methods are unsuitable. The book offers a valuable guide for everyone interested in big data applications: students looking for an overview of related analytical techniques, practitioners interested in applying optimization techniques, and researchers seeking to improve and expand on these techniques.
This book provides two general granular computing approaches to mining relational data, the first of which uses abstract descriptions of relational objects to build their granular representation, while the second extends existing granular data mining solutions to a relational case. Both approaches make it possible to perform and improve popular data mining tasks such as classification, clustering, and association discovery. How can different relational data mining tasks best be unified? How can the construction process of relational patterns be simplified? How can richer knowledge from relational data be discovered? All these questions can be answered in the same way: by mining relational data in the paradigm of granular computing! This book will allow readers with previous experience in the field of relational data mining to discover the many benefits of its granular perspective. In turn, those readers familiar with the paradigm of granular computing will find valuable insights on its application to mining relational data. Lastly, the book offers all readers interested in computational intelligence in the broader sense the opportunity to deepen their understanding of the newly emerging field granular-relational data mining.
Mohamed Medhat Gaber "It is not my aim to surprise or shock you - but the simplest way I can summarise is to say that there are now in the world machines that think, that learn and that create. Moreover, their ability to do these things is going to increase rapidly until - in a visible future - the range of problems they can handle will be coextensive with the range to which the human mind has been applied" by Herbert A. Simon (1916-2001) 1Overview This book suits both graduate students and researchers with a focus on discovering knowledge from scienti c data. The use of computational power for data analysis and knowledge discovery in scienti c disciplines has found its roots with the re- lution of high-performance computing systems. Computational science in physics, chemistry, and biology represents the rst step towards automation of data analysis tasks. The rational behind the developmentof computationalscience in different - eas was automating mathematical operations performed in those areas. There was no attention paid to the scienti c discovery process. Automated Scienti c Disc- ery (ASD) [1-3] represents the second natural step. ASD attempted to automate the process of theory discovery supported by studies in philosophy of science and cognitive sciences. Although early research articles have shown great successes, the area has not evolved due to many reasons. The most important reason was the lack of interaction between scientists and the automating systems.
Hyperspectral Image Fusion is the first text dedicated to the fusion techniques for such a huge volume of data consisting of a very large number of images. This monograph brings out recent advances in the research in the area of visualization of hyperspectral data. It provides a set of pixel-based fusion techniques, each of which is based on a different framework and has its own advantages and disadvantages. The techniques are presented with complete details so that practitioners can easily implement them. It is also demonstrated how one can select only a few specific bands to speed up the process of fusion by exploiting spatial correlation within successive bands of the hyperspectral data. While the techniques for fusion of hyperspectral images are being developed, it is also important to establish a framework for objective assessment of such techniques. This monograph has a dedicated chapter describing various fusion performance measures that are applicable to hyperspectral image fusion. This monograph also presents a notion of consistency of a fusion technique which can be used to verify the suitability and applicability of a technique for fusion of a very large number of images. This book will be a highly useful resource to the students, researchers, academicians and practitioners in the specific area of hyperspectral image fusion, as well as generic image fusion.
This book presents statistical processes for health care delivery and covers new ideas, methods and technologies used to improve health care organizations. It gathers the proceedings of the Third International Conference on Health Care Systems Engineering (HCSE 2017), which took place in Florence, Italy from May 29 to 31, 2017. The Conference provided a timely opportunity to address operations research and operations management issues in health care delivery systems. Scientists and practitioners discussed new ideas, methods and technologies for improving the operations of health care systems, developed in close collaborations with clinicians. The topics cover a broad spectrum of concrete problems that pose challenges for researchers and practitioners alike: hospital drug logistics, operating theatre management, home care services, modeling, simulation, process mining and data mining in patient care and health care organizations.
This book offers a coherent and comprehensive approach to feature subset selection in the scope of classification problems, explaining the foundations, real application problems and the challenges of feature selection for high-dimensional data. The authors first focus on the analysis and synthesis of feature selection algorithms, presenting a comprehensive review of basic concepts and experimental results of the most well-known algorithms. They then address different real scenarios with high-dimensional data, showing the use of feature selection algorithms in different contexts with different requirements and information: microarray data, intrusion detection, tear film lipid layer classification and cost-based features. The book then delves into the scenario of big dimension, paying attention to important problems under high-dimensional spaces, such as scalability, distributed processing and real-time processing, scenarios that open up new and interesting challenges for researchers. The book is useful for practitioners, researchers and graduate students in the areas of machine learning and data mining.
The rate at which geospatial data is being generated exceeds our computational capabilities to extract patterns for the understanding of a dynamically changing world. Geoinformatics and data mining focuses on the development and implementation of computational algorithms to solve these problems. This unique volume contains a collection of chapters on state-of-the-art data mining techniques applied to geoinformatic problems of high complexity and important societal value. Data Mining for Geoinformatics addresses current concerns and developments relating to spatio-temporal data mining issues in remotely-sensed data, problems in meteorological data such as tornado formation, estimation of radiation from the Fukushima nuclear power plant, simulations of traffic data using OpenStreetMap, real time traffic applications of data stream mining, visual analytics of traffic and weather data and the exploratory visualization of collective, mobile objects such as the flocking behavior of wild chickens. This book is designed for researchers and advanced-level students focused on computer science, earth science and geography as a reference or secondary text book. Practitioners working in the areas of data mining and geoscience will also find this book to be a valuable reference.
Advances in hardware technology have increased the capability to store and record personal data about consumers and individuals. This has caused concerns that personal data may be used for a variety of intrusive or malicious purposes. Privacy Preserving Data Mining: Models and Algorithms proposes a number of techniques to perform the data mining tasks in a privacy-preserving way. These techniques generally fall into the following categories: data modification techniques, cryptographic methods and protocols for data sharing, statistical techniques for disclosure and inference control, query auditing methods, randomization and perturbation-based techniques. This edited volume contains surveys by distinguished researchers in the privacy field. Each survey includes the key research content as well as future research directions of a particular topic in privacy. Privacy Preserving Data Mining: Models and Algorithms is designed for researchers, professors, and advanced-level students in computer science. This book is also suitable for practitioners in industry.
This book presents the Recommender System for Improving Customer Loyalty. New and innovative products have begun appearing from a wide variety of countries, which has increased the need to improve the customer experience. When a customer spends hundreds of thousands of dollars on a piece of equipment, keeping it running efficiently is critical to achieving the desired return on investment. Moreover, managers have discovered that delivering a better customer experience pays off in a number of ways. A study of publicly traded companies conducted by Watermark Consulting found that from 2007 to 2013, companies with a better customer service generated a total return to shareholders that was 26 points higher than the S&P 500. This is only one of many studies that illustrate the measurable value of providing a better service experience. The Recommender System presented here addresses several important issues. (1) It provides a decision framework to help managers determine which actions are likely to have the greatest impact on the Net Promoter Score. (2) The results are based on multiple clients. The data mining techniques employed in the Recommender System allow users to "learn" from the experiences of others, without sharing proprietary information. This dramatically enhances the power of the system. (3) It supplements traditional text mining options. Text mining can be used to identify the frequency with which topics are mentioned, and the sentiment associated with a given topic. The Recommender System allows users to view specific, anonymous comments associated with actual customers. Studying these comments can provide highly accurate insights into the steps that can be taken to improve the customer experience. (4) Lastly, the system provides a sensitivity analysis feature. In some cases, certain actions can be more easily implemented than others. The Recommender System allows managers to "weigh" these actions and determine which ones would have a greater impact.
This book addresses the challenges of social network and social media analysis in terms of prediction and inference. The chapters collected here tackle these issues by proposing new analysis methods and by examining mining methods for the vast amount of social content produced. Social Networks (SNs) have become an integral part of our lives; they are used for leisure, business, government, medical, educational purposes and have attracted billions of users. The challenges that stem from this wide adoption of SNs are vast. These include generating realistic social network topologies, awareness of user activities, topic and trend generation, estimation of user attributes from their social content, and behavior detection. This text has applications to widely used platforms such as Twitter and Facebook and appeals to students, researchers, and professionals in the field.
Provides readers with the methods, algorithms, and means to perform text mining tasks This book is devoted to the fundamentals of text mining using Perl, an open-source programming tool that is freely available via the Internet (www.perl.org). It covers mining ideas from several perspectives--statistics, data mining, linguistics, and information retrieval--and provides readers with the means to successfully complete text mining tasks on their own. The book begins with an introduction to regular expressions, a text pattern methodology, and quantitative text summaries, all of which are fundamental tools of analyzing text. Then, it builds upon this foundation to explore: Probability and texts, including the bag-of-words model Information retrieval techniques such as the TF-IDF similarity measure Concordance lines and corpus linguistics Multivariate techniques such as correlation, principal components analysis, and clustering Perl modules, German, and permutation tests Each chapter is devoted to a single key topic, and the author carefully and thoughtfully introduces mathematical concepts as they arise, allowing readers to learn as they go without having to refer to additional books. The inclusion of numerous exercises and worked-out examples further complements the book's student-friendly format. Practical Text Mining with Perl is ideal as a textbook for undergraduate and graduate courses in text mining and as a reference for a variety of professionals who are interested in extracting information from text documents.
This book presents the proceedings of Workshops and Posters at the 13th International Conference on Spatial Information Theory (COSIT 2017), which is concerned with all aspects of space and spatial environments as experienced, represented and elaborated by humans, other animals and artificial agents. Complementing the main conference proceedings, workshop papers and posters investigate specialized research questions or challenges in spatial information theory and closely related topics, including advances in the conceptualization of specific spatio-temporal domains and diverse applications of spatial and temporal information.
This book provides a general and comprehensible overview of supervised descriptive pattern mining, considering classic algorithms and those based on heuristics. It provides some formal definitions and a general idea about patterns, pattern mining, the usefulness of patterns in the knowledge discovery process, as well as a brief summary on the tasks related to supervised descriptive pattern mining. It also includes a detailed description on the tasks usually grouped under the term supervised descriptive pattern mining: subgroups discovery, contrast sets and emerging patterns. Additionally, this book includes two tasks, class association rules and exceptional models, that are also considered within this field. A major feature of this book is that it provides a general overview (formal definitions and algorithms) of all the tasks included under the term supervised descriptive pattern mining. It considers the analysis of different algorithms either based on heuristics or based on exhaustive search methodologies for any of these tasks. This book also illustrates how important these techniques are in different fields, a set of real-world applications are described. Last but not least, some related tasks are also considered and analyzed. The final aim of this book is to provide a general review of the supervised descriptive pattern mining field, describing its tasks, its algorithms, its applications, and related tasks (those that share some common features). This book targets developers, engineers and computer scientists aiming to apply classic and heuristic-based algorithms to solve different kinds of pattern mining problems and apply them to real issues. Students and researchers working in this field, can use this comprehensive book (which includes its methods and tools) as a secondary textbook.
The IEEE ICDM 2004 workshop on the Foundation of Data Mining and the IEEE ICDM 2005 workshop on the Foundation of Semantic Oriented Data and Web Mining focused on topics ranging from the foundations of data mining to new data mining paradigms. The workshops brought together both data mining researchers and practitioners to discuss these two topics while seeking solutions to long standing data mining problems and stimul- ing new data mining research directions. We feel that the papers presented at these workshops may encourage the study of data mining as a scienti?c ?eld and spark new communications and collaborations between researchers and practitioners. Toexpressthevisionsforgedintheworkshopstoawiderangeofdatam- ing researchers and practitioners and foster active participation in the study of foundations of data mining, we edited this volume by involving extended and updated versions of selected papers presented at those workshops as well as some other relevant contributions. The content of this book includes st- ies of foundations of data mining from theoretical, practical, algorithmical, and managerial perspectives. The following is a brief summary of the papers contained in this book.
Recently, there has been a rapid increase in interest regarding social network analysis in the data mining community. Cognitive radios are expected to play a major role in meeting this exploding traffic demand on social networks due to their ability to sense the environment, analyze outdoor parameters, and then make decisions for dynamic time, frequency, space, resource allocation, and management to improve the utilization of mining the social data. Cognitive Social Mining Applications in Data Analytics and Forensics is an essential reference source that reviews cognitive radio concepts and examines their applications to social mining using a machine learning approach so that an adaptive and intelligent mining is achieved. Featuring research on topics such as data mining, real-time ubiquitous social mining services, and cognitive computing, this book is ideally designed for social network analysts, researchers, academicians, and industry professionals.
This book focuses on the development of wellness protocols for smart home monitoring, aiming to forecast the wellness of individuals living in ambient assisted living (AAL) environments. It describes in detail the design and implementation of heterogeneous wireless sensors and networks as applied to data mining and machine learning, which the protocols are based on. Further, it shows how these sensor and actuator nodes are deployed in the home environment, generating real-time data on object usage and other movements inside the home, and therefore demonstrates that the protocols have proven to offer a reliable, efficient, flexible, and economical solution for smart home systems. Documenting the approach from sensor to decision making and information generation, the book addresses various issues concerning interference mitigation, errors, security and large data handling. As such, it offers a valuable resource for researchers, students and practitioners interested in interdisciplinary studies at the intersection of wireless sensing processing, radio communication, the Internet of Things and machine learning, and in how they can be applied to smart home monitoring and assisted living environments.
"Computational Analysis of Terrorist Groups: Lashkar-e-Taiba "provides an in-depth look at Web intelligence, and how advanced mathematics and modern computing technology can influence the insights we have on terrorist groups. This book primarily focuses on one famous terrorist group known as Lashkar-e-Taiba (or LeT), and how it operates.After 10 years of counter Al Qaeda operations, LeT is considered by many in the counter-terrorism community to be an even greater threat to the US and world peace than Al Qaeda. "Computational Analysis of Terrorist Groups: Lashkar-e-Taiba "is the first book that demonstrates how to use modern computational analysis techniques including methods for "big data" analysis. This book presents how to quantify both the environment in which LeT operate, and the actions it took over a 20-year period, and represent it as a relational database table. This table is then mined using sophisticated data mining algorithms in order to gain detailed, mathematical, computational and statistical insights into LeT and its operations.This book also provides a detailed history of Lashkar-e-Taiba based on extensive analysis conducted by using open source information and public statements. Each chapter includes a case study, as well as a slide describing the key results which are available on the authors' web sites. "Computational Analysis of Terrorist Groups: Lashkar-e-Taiba "is designed for a professional market composed of government or military workers, researchers and computer scientists working in the web intelligence field. Advanced-level students in computer science will also find this valuable as a reference book."
When Don Swanson hypothesized a connection between Raynaud's phenomenon anddietary?shoil, the?eldofliterature-baseddiscovery(LBD)wasborn. During thesubsequenttwodecadesasteadystreamofresearchershavepublishedarticles aboutLBDandthe?eldhasmadesteadyprogressinlayingfoundationsandc- ating an identity. It is curiously signi?cant that LBD is not "owned" by any p- ticulardiscipline, forexample, knowledge discoveryortextmining. Rather, LBD researchersoriginatefromarangeof?eldsincludinginformationscience, infor- tionretrieval, logic, andthebiomedicalsciences. Thisre?ectsthefactLBDisan inherentlymulti-disciplinaryenterprisewherecollaborationsbetweentheinfor- tionandbiomedicalsciencesarereadilyencountered. Thismulti-disciplinaryaspect ofLBDhasmadeitharderforthe?eldtoplanta?ag, sotospeak. Thepresentv- umecanbeseenasanattempttoredressthis. Itpresentschaptersprovidingabroad brushstrokeofLBDbyleadingresearchersprovidinganoverviewofthestateofthe art, themodelsandtheoriesused, experimentalstudies, lessonslearnt, application areas, andfuturechallenges. Inshort, itattemptstoconveyalearnedimpressionof whereandhowLBDisbeingdeployed. DonSwansonhaskindlyagreedtoprovide theintroductorychapter. Itisthehopeandintentionthatthisvolumewillplanta ?aginthegroundandinspirenewresearcherstotheLBDchallenge. PeterBruza July2007 MarcWeeber v Contents Preface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Contributors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix Part I General Outlook and Possibilities Literature-Based Discovery? The Very Idea . . . . . . . . . . . . . . . . . . . . . . . . . 3 D. R. Swanson The Place of Literature-Based Discovery in Contemporary Scienti?c Practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 NeilR. SmalheiserandVetleI. Torvik The Tip of the Iceberg: The Quest for Innovation at the Base of the Pyramid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 M. D. GordonandN. F. Awad The 'Open Discovery' Challenge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 JonathanD. Wren Where is the Discovery in Literature-Based Discovery?. . . . . . . . . . . . . . . . 57 R. N. Kostoff Part II Methodology and Applications Analyzing LBD Methods using a General Framework. . . . . . . . . . . . . . . . . 75 A. K. Sehgal, X. Y. Qiu, andP. Srinivasan Evaluation of Literature-Based Discovery Systems. . . . . . . . . . . . . . . . . . . . 101 M. Yetisgen-YildizandW. Pratt vii viii Contents Factor Analytic Approach to Transitive Text Mining using Medline Descriptors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 J. StegmannandG. Grohmann Literature-Based Knowledge Discovery using Natural Language Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 D. Hristovski, C. Friedman, T. C. Rind?esch, andB. Peterlin Information Retrieval in Literature-Based Discovery. . . . . . . . . . . . . . . . . . 153 W. Hersh Biomedical Application of Knowledge Discovery . . . . . . . . . . . . . . . . . . . . . 173 A. Koike Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 Contributors NeveenFaragAwad SchoolofBusiness, WayneStateUniversity, USA CarolFriedman
Advances in social science research methodologies and data analytic methods are changing the way research in information systems is conducted. New developments in statistical software technologies for data mining (DM) such as regression splines or decision tree induction can be used to assist researchers in systematic post-positivist theory testing and development. Established management science techniques like data envelopment analysis (DEA), and value focused thinking (VFT) can be used in combination with traditional statistical analysis and data mining techniques to more effectively explore behavioral questions in information systems research. As adoption and use of these research methods expand, there is growing need for a resource book to assist doctoral students and advanced researchers in understanding their potential to contribute to a broad range of research problems. "Advances in Research Methods for Information Systems Research: Data Mining, Data Envelopment Analysis, Value Focused Thinking" focuses on bridging and unifying these three different methodologies in order to bring them together in a unified volume for the information systems community. This book serves as a resource that provides overviews on each method, as well as applications on how they can be employed to address IS research problems. Its goal is to help researchers in their continuous efforts to set the pace for having an appropriate interplay between behavioral research and design science.
This book records the new research findings and development in the field of industrial engineering and engineering management, and it will serve as the guidebook for the potential development in future. It gathers the accepted papers from the 25th International conference on Industrial Engineering and Engineering Management held at Anhui University of Technology in Maanshan during August 24-25, 2019. The aim of this conference was to provide a high-level international forum for experts, scholars and entrepreneurs at home and abroad to present the recent advances, new techniques and application, to promote discussion and interaction among academics, researchers and professionals to promote the developments and applications of the related theories and technologies in universities and enterprises, and to establish business or research relations to find global partners for future collaboration in the field of Industrial Engineering. It addresses diverse themes in smart manufacturing, artificial intelligence, ergonomics, simulation and modeling, quality and reliability, logistics engineering, data mining and other related fields. This timely book summarizes and promotes the latest achievements in the field of industrial engineering and related fields over the past year, proposing prospects and vision for the further development.
This book provides step-by-step explanations of successful implementations and practical applications of machine learning. The book's GitHub page contains software codes to assist readers in adapting materials and methods for their own use. A wide variety of applications are discussed, including wireless mesh network and power systems optimization; computer vision; image and facial recognition; protein prediction; data mining; and data discovery. Numerous state-of-the-art machine learning techniques are employed (with detailed explanations), including biologically-inspired optimization (genetic and other evolutionary algorithms, swarm intelligence); Viola Jones face detection; Gaussian mixture modeling; support vector machines; deep convolutional neural networks with performance enhancement techniques (including network design, learning rate optimization, data augmentation, transfer learning); spiking neural networks and timing dependent plasticity; frequent itemset mining; binary classification; and dynamic programming. This book provides valuable information on effective, cutting-edge techniques, and approaches for students, researchers, practitioners, and teachers in the field of machine learning.
Over the years, advances in the business world as well as the changing of diverse application contexts, have caused Data Warehousing and Data Mining to become more paramount in our society. The two share many common issues and are commonly interrelated. Integrations of Data Warehousing, Data Mining and Database Technologies: Innovative Approaches provides a comprehensive compilation of knowledge covering state-of-the-art developments and research, as well as current innovative activities in data warehousing and mining. This book focuses on the integration between the fields of data warehousing and data mining, with emphasis on the applicability to real world problems and provides a broad perspective on the future of these two cohesive topic areas.
The development of Operations Research (OR) requires constant improvements, such as the integration of research results with business applications and innovative educational practice. The full deployment and commercial exploitation of goods and services generally need the construction of strong synergies between educational institutions and businesses. The IO2015 -XVII Congress of APDIO aims at strengthening the knowledge triangle in education, research and innovation, in order to maximize the contribution of OR for sustainable growth, the promoting of a knowledge-based economy, and the smart use of finite resources. The IO2015-XVII Congress of APDIO is a privileged meeting point for the promotion and dissemination of OR and related disciplines, through the exchange of ideas among teachers, researchers, students , and professionals with different background, but all sharing a common desire that is the development of OR.
Social media sites are constantly evolving with huge amounts of scattered data or big data, which makes it difficult for researchers to trace the information flow. It is a daunting task to extract a useful piece of information from the vast unstructured big data; the disorganized structure of social media contains data in various forms such as text and videos as well as huge real-time data on which traditional analytical methods like statistical approaches fail miserably. Due to this, there is a need for efficient data mining techniques that can overcome the shortcomings of the traditional approaches. Data Mining Approaches for Big Data and Sentiment Analysis in Social Media encourages researchers to explore the key concepts of data mining, such as how they can be utilized on online social media platforms, and provides advances on data mining for big data and sentiment analysis in online social media, as well as future research directions. Covering a range of concepts from machine learning methods to data mining for big data analytics, this book is ideal for graduate students, academicians, faculty members, scientists, researchers, data analysts, social media analysts, managers, and software developers who are seeking to learn and carry out research in the area of data mining for big data and sentiment. |
![]() ![]() You may like...
Transforming Businesses With Bitcoin…
Dharmendra Singh Rajput, Ramjeevan Singh Thakur, …
Hardcover
R6,775
Discovery Miles 67 750
Implementation of Machine Learning…
Veljko Milutinovi, Nenad Mitic, …
Hardcover
R7,586
Discovery Miles 75 860
|