![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > Applications of computing > Databases > Data mining
With the onset of massive cosmological data collection through media such as the Sloan Digital Sky Survey (SDSS), galaxy classification has been accomplished for the most part with the help of citizen science communities like Galaxy Zoo. Seeking the wisdom of the crowd for such Big Data processing has proved extremely beneficial. However, an analysis of one of the Galaxy Zoo morphological classification data sets has shown that a significant majority of all classified galaxies are labelled as Uncertain . This book reports on how to use data mining, more specifically clustering, to identify galaxies that the public has shown some degree of uncertainty for as to whether they belong to one morphology type or another. The book shows the importance of transitions between different data mining techniques in an insightful workflow. It demonstrates that Clustering enables to identify discriminating features in the analysed data sets, adopting a novel feature selection algorithms called Incremental Feature Selection (IFS). The book shows the use of state-of-the-art classification techniques, Random Forests and Support Vector Machines to validate the acquired results. It is concluded that a vast majority of these galaxies are, in fact, of spiral morphology with a small subset potentially consisting of stars, elliptical galaxies or galaxies of other morphological variants."
This book reviews the latest developments in nature-inspired computation, with a focus on the cross-disciplinary applications in data mining and machine learning. Data mining, machine learning and nature-inspired computation are current hot research topics due to their importance in both theory and practical applications. Adopting an application-focused approach, each chapter introduces a specific topic, with detailed descriptions of relevant algorithms, extensive literature reviews and implementation details. Covering topics such as nature-inspired algorithms, swarm intelligence, classification, clustering, feature selection, cybersecurity, learning algorithms over cloud, extreme learning machines, object categorization, particle swarm optimization, flower pollination and firefly algorithms, and neural networks, it also presents case studies and applications, including classifications of crisis-related tweets, extraction of named entities in the Tamil language, performance-based prediction of diseases, and healthcare services. This book is both a valuable a reference resource and a practical guide for students, researchers and professionals in computer science, data and management sciences, artificial intelligence and machine learning.
This book provides information on data-driven infrastructure design, analytical approaches, and technological solutions with case studies for smart cities. This book aims to attract works on multidisciplinary research spanning across the computer science and engineering, environmental studies, services, urban planning and development, social sciences and industrial engineering on technologies, case studies, novel approaches, and visionary ideas related to data-driven innovative solutions and big data-powered applications to cope with the real world challenges for building smart cities.
The purpose of this book is to review the recent advances in E-health technologies and applications. In particular, the book investigates the recent advancements in physical design of medical devices, signal processing and emergent wireless technologies for E-health. In a second part, novel security and privacy solutions for IoT-based E-health applications are presented. The last part of the book is focused on applications, data mining and data analytics for E-health using artificial intelligence and cloud infrastructure. E-health has been an evolving concept since its inception, due to the numerous technologies that can be adapted to offer new innovative and efficient E-health applications. Recently, with the tremendous advancement of wireless technologies, sensors and wearable devices and software technologies, new opportunities have arisen and transformed the E-health field. Moreover, with the expansion of the Internet of Things, and the huge amount of data that connected E-health devices and applications are generating, it is also mandatory to address new challenges related to the data management, applications management and their security. Through this book, readers will be introduced to all these concepts. This book is intended for all practitioners (industrial and academic) interested in widening their knowledge in wireless communications and embedded technologies applied to E-health, cloud computing, artificial intelligence and big data for E-health applications and security issues in E-health.
With the growing popularity of "big data", the potential value of personal data has attracted more and more attention. Applications built on personal data can create tremendous social and economic benefits. Meanwhile, they bring serious threats to individual privacy. The extensive collection, analysis and transaction of personal data make it difficult for an individual to keep the privacy safe. People now show more concerns about privacy than ever before. How to make a balance between the exploitation of personal information and the protection of individual privacy has become an urgent issue. In this book, the authors use methodologies from economics, especially game theory, to investigate solutions to the balance issue. They investigate the strategies of stakeholders involved in the use of personal data, and try to find the equilibrium. The book proposes a user-role based methodology to investigate the privacy issues in data mining, identifying four different types of users, i.e. four user roles, involved in data mining applications. For each user role, the authors discuss its privacy concerns and the strategies that it can adopt to solve the privacy problems. The book also proposes a simple game model to analyze the interactions among data provider, data collector and data miner. By solving the equilibria of the proposed game, readers can get useful guidance on how to deal with the trade-off between privacy and data utility. Moreover, to elaborate the analysis on data collector's strategies, the authors propose a contract model and a multi-armed bandit model respectively. The authors discuss how the owners of data (e.g. an individual or a data miner) deal with the trade-off between privacy and utility in data mining. Specifically, they study users' strategies in collaborative filtering based recommendation system and distributed classification system. They built game models to formulate the interactions among data owners, and propose learning algorithms to find the equilibria.
This book presents a comprehensive and up-to-date treatise of a range of methodological and algorithmic issues. It also discusses implementations and case studies, identifies the best design practices, and assesses data analytics business models and practices in industry, health care, administration and business.Data science and big data go hand in hand and constitute a rapidly growing area of research and have attracted the attention of industry and business alike. The area itself has opened up promising new directions of fundamental and applied research and has led to interesting applications, especially those addressing the immediate need to deal with large repositories of data and building tangible, user-centric models of relationships in data. Data is the lifeblood of today's knowledge-driven economy.Numerous data science models are oriented towards end users and along with the regular requirements for accuracy (which are present in any modeling), come the requirements for ability to process huge and varying data sets as well as robustness, interpretability, and simplicity (transparency). Computational intelligence with its underlying methodologies and tools helps address data analytics needs.The book is of interest to those researchers and practitioners involved in data science, Internet engineering, computational intelligence, management, operations research, and knowledge-based systems.
With the improvements of artificial intelligence, processor speeds and database sizes, the rapidly expanding field of data mining continues to provide advancing methods for managing databases and gaining knowledge.Developments in Data Extraction, Management, and Analysis is an essential collection of research on the area of data mining and analytics. Presenting the most recent perspectives on data mining subjects and current issues, this book is useful for practitioners and academics alike.
This book presents an exhaustive and timely review of key research work on fuzzy XML data management, and provides readers with a comprehensive resource on the state-of-the art tools and theories in this fast growing area. Topics covered in the book include: representation of fuzzy XML, query of fuzzy XML, fuzzy database models, extraction of fuzzy XML from fuzzy database models, reengineering of fuzzy XML into fuzzy database models, and reasoning of fuzzy XML. The book is intended as a reference guide for researchers, practitioners and graduate students working and/or studying in the field of Web Intelligence, as well as for data and knowledge engineering professionals seeking new approaches to replace traditional methods, which may be unnecessarily complex or even unproductive.
This edited volume addresses the vast challenges of adapting Online Social Media (OSM) to developing research methods and applications. The topics cover generating realistic social network topologies, awareness of user activities, topic and trend generation, estimation of user attributes from their social content, behavior detection, mining social content for common trends, identifying and ranking social content sources, building friend-comprehension tools, and many others. Each of the ten chapters tackle one or more of these issues by proposing new analysis methods or new visualization techniques, or both, for famous OSM applications such as Twitter and Facebook. This collection of contributed chapters address these challenges. Online Social Media has become part of the daily lives of hundreds of millions of users generating an immense amount of 'social content'. Addressing the challenges that stem from this wide adaptation of OSM is what makes this book a valuable contribution to the field of social networks.
This volume conveys some of the surprises, puzzles and success stories in high-dimensional and complex data analysis and related fields. Its peer-reviewed contributions showcase recent advances in variable selection, estimation and prediction strategies for a host of useful models, as well as essential new developments in the field. The continued and rapid advancement of modern technology now allows scientists to collect data of increasingly unprecedented size and complexity. Examples include epigenomic data, genomic data, proteomic data, high-resolution image data, high-frequency financial data, functional and longitudinal data, and network data. Simultaneous variable selection and estimation is one of the key statistical problems involved in analyzing such big and complex data. The purpose of this book is to stimulate research and foster interaction between researchers in the area of high-dimensional data analysis. More concretely, its goals are to: 1) highlight and expand the breadth of existing methods in big data and high-dimensional data analysis and their potential for the advancement of both the mathematical and statistical sciences; 2) identify important directions for future research in the theory of regularization methods, in algorithmic development, and in methodologies for different application areas; and 3) facilitate collaboration between theoretical and subject-specific researchers.
The book studies the existing and potential connections between Social Network Analysis (SNA) and Formal Concept Analysis (FCA) by showing how standard SNA techniques, usually based on graph theory, can be supplemented by FCA methods, which rely on lattice theory. The book presents contributions to the following areas: acquisition of terminological knowledge from social networks, knowledge communities, individuality computation, other types of FCA-based analysis of bipartite graphs (two-mode networks), multimodal clustering, community detection and description in one-mode and multi-mode networks, adaptation of the dual-projection approach to weighted bipartite graphs, extensions to the Kleinberg's HITS algorithm as well as attributed graph analysis.
This fully updated book collects numerous data mining techniques, reflecting the acceleration and diversity of the development of data-driven approaches to the life sciences. The first half of the volume examines genomics, particularly metagenomics and epigenomics, which promise to deepen our knowledge of genes and genomes, while the second half of the book emphasizes metabolism and the metabolome as well as relevant medicine-oriented subjects. Written for the highly successful Methods in Molecular Biology series, chapters include the kind of detail and expert implementation advice that is useful for getting optimal results. Authoritative and practical, Data Mining for Systems Biology: Methods and Protocols, Second Edition serves as an ideal resource for researchers of biology and relevant fields, such as medical, pharmaceutical, and agricultural sciences, as well as for the scientists and engineers who are working on developing data-driven techniques, such as databases, data sciences, data mining, visualization systems, and machine learning or artificial intelligence that now are central to the paradigm-altering discoveries being made with a higher frequency.
This book presents the combined proceedings of the 7th International Conference on Computer Science and its Applications (CSA-15) and the International Conference on Ubiquitous Information Technologies and Applications (CUTE 2015), both held in Cebu, Philippines, December 15 - 17, 2015. The aim of these two meetings was to promote discussion and interaction among academics, researchers and professionals in the field of computer science covering topics including mobile computing, security and trust management, multimedia systems and devices, networks and communications, databases and data mining, and ubiquitous computing technologies such as ubiquitous communication and networking, ubiquitous software technology, ubiquitous systems and applications, security and privacy. These proceedings reflect the state-of-the-art in the development of computational methods, numerical simulations, error and uncertainty analysis and novel applications of new processing techniques in engineering, science, and other disciplines related to computer science.
This text integrates different mobility data handling processes, from database management to multi-dimensional analysis and mining, into a unified presentation driven by the spectrum of requirements raised by real-world applications. It presents a step-by-step methodology to understand and exploit mobility data: collecting and cleansing data, storage in Moving Object Database (MOD) engines, indexing, processing, analyzing and mining mobility data. Emerging issues, such as semantic and privacy-aware querying and mining as well as distributed data processing, are also covered. Theoretical presentation is smoothly interchanged with hands-on exercises and case studies involving an actual MOD engine. The authors are established experts who address both theoretical and practical dimensions of the field but also present valuable prototype software. The background context, clear explanations and sample exercises make this an ideal textbook for graduate students studying database management, data mining and geographic information systems.
This book is devoted to the modeling and understanding of complex urban systems. This second volume of Understanding Complex Urban Systems focuses on the challenges of the modeling tools, concerning, e.g., the quality and quantity of data and the selection of an appropriate modeling approach. It is meant to support urban decision-makers-including municipal politicians, spatial planners, and citizen groups-in choosing an appropriate modeling approach for their particular modeling requirements. The contributors to this volume are from different disciplines, but all share the same goal: optimizing the representation of complex urban systems. They present and discuss a variety of approaches for dealing with data-availability problems and finding appropriate modeling approaches-and not only in terms of computer modeling. The selection of articles featured in this volume reflect a broad variety of new and established modeling approaches such as: - An argument for using Big Data methods in conjunction with Agent-based Modeling; - The introduction of a participatory approach involving citizens, in order to utilize an Agent-based Modeling approach to simulate urban-growth scenarios; - A presentation of semantic modeling to enable a flexible application of modeling methods and a flexible exchange of data; - An article about a nested-systems approach to analyzing a city's interdependent subsystems (according to these subsystems' different velocities of change); - An article about methods that use Luhmann's system theory to characterize cities as systems that are composed of flows; - An article that demonstrates how the Sen-Nussbaum Capabilities Approach can be used in urban systems to measure household well-being shifts that occur in response to the resettlement of urban households; - A final article that illustrates how Adaptive Cycles of Complex Adaptive Systems, as well as innovation, can be applied to gain a better understanding of cities and to promote more resilient and more sustainable urban futures.
This book presents a comprehensive report on the evolution of Fuzzy Logic since its formulation in Lotfi Zadeh's seminal paper on "fuzzy sets," published in 1965. In addition, it features a stimulating sampling from the broad field of research and development inspired by Zadeh's paper. The chapters, written by pioneers and prominent scholars in the field, show how fuzzy sets have been successfully applied to artificial intelligence, control theory, inference, and reasoning. The book also reports on theoretical issues; features recent applications of Fuzzy Logic in the fields of neural networks, clustering, data mining and software testing; and highlights an important paradigm shift caused by Fuzzy Logic in the area of uncertainty management. Conceived by the editors as an academic celebration of the fifty years' anniversary of the 1965 paper, this work is a must-have for students and researchers willing to get an inspiring picture of the potentialities, limitations, achievements and accomplishments of Fuzzy Logic-based systems.
This book describes in detail sampling techniques that can be used for unsupervised and supervised cases, with a focus on sampling techniques for machine learning algorithms. It covers theory and models of sampling methods for managing scalability and the "curse of dimensionality", their implementations, evaluations, and applications. A large part of the book is dedicated to database comprising standard feature vectors, and a special section is reserved to the handling of more complex objects and dynamic scenarios. The book is ideal for anyone teaching or learning pattern recognition and interesting teaching or learning pattern recognition and is interested in the big data challenge. It provides an accessible introduction to the field and discusses the state of the art concerning sampling techniques for supervised and unsupervised task. Provides a comprehensive description of sampling techniques for unsupervised and supervised tasks; Describe implementation and evaluation of algorithms that simultaneously manage scalable problems and curse of dimensionality; Addresses the role of sampling in dynamic scenarios, sampling when dealing with complex objects, and new challenges arising from big data. "This book represents a timely collection of state-of-the art research of sampling techniques, suitable for anyone who wants to become more familiar with these helpful techniques for tackling the big data challenge." M. Emre Celebi, Ph.D., Professor and Chair, Department of Computer Science, University of Central Arkansas "In science the difficulty is not to have ideas, but it is to make them work" From Carlo Rovelli
This volume contains nineteen research papers belonging to the areas of computational statistics, data mining, and their applications. Those papers, all written specifically for this volume, are their authors' contributions to honour and celebrate Professor Jacek Koronacki on the occcasion of his 70th birthday. The book's related and often interconnected topics, represent Jacek Koronacki's research interests and their evolution. They also clearly indicate how close the areas of computational statistics and data mining are.
In this third edition of Vehicle Accident Analysis & Reconstruction Methods, Raymond M. Brach and R. Matthew Brach have expanded and updated their essential work for professionals in the field of accident reconstruction. Most accidents can be reconstructed effectively using of calculations and investigative and experimental data: the authors present the latest scientific, engineering, and mathematical reconstruction methods, providing a firm scientific foundation for practitioners. Accidents that cannot be reconstructed using the methods in this book are rare. In recent decades, the field of crash reconstruction has been transformed through the use of technology. The advent of event data records (EDRs) on vehicles signaled the era of modern crash reconstruction, which utilizes the same physical evidence that was previously available as well as electronic data that are measured/captured before, during, and after the collision. There is increased demand for more professional and accurate reconstruction as more crash data is available from vehicle sensors. The third edition of this essential work includes a new chapter on the use of EDRs as well as examples using EDR data in accident reconstruction. Early chapters feature foundational material that is necessary for the understanding of vehicle collisions and vehicle motion; later chapters present applications of the methods and include example reconstructions. As a result, Vehicle Accident Analysis & Reconstruction Methods remains the definitive resource in accident reconstruction.
This book constitutes the refereed post-conference proceedings of the 10th IFIP WG 5.14 International Conference on Computer and Computing Technologies in Agriculture, CCTA 2016, held in Dongying, China, in October 2016. The 55 revised papers presented were carefully reviewed and selected from 128 submissions. They cover a wide range of interesting theories and applications of information technology in agriculture, including intelligent sensing, cloud computing, key technologies of the Internet of Things, precision agriculture, animal husbandry information technology, including Internet + modern animal husbandry, livestock big data platform and cloud computing applications, intelligent breeding equipment, precision production models, water product networking and big data , including fishery IoT, intelligent aquaculture facilities, and big data applications.
This volume complies a set of Data Mining techniques and new applications in real biomedical scenarios. Chapters focus on innovative data mining techniques, biomedical datasets and streams analysis, and real applications. Written in the highly successful Methods in Molecular Biology series format, chapters are thought to show to Medical Doctors and Engineers the new trends and techniques that are being applied to Clinical Medicine with the arrival of new Information and Communication technologies Authoritative and practical, Data Mining in Clinical Medicine seeks to aid scientists with new approaches and trends in the field.
This book offers a clear understanding of the concept of context-aware machine learning including an automated rule-based framework within the broad area of data science and analytics, particularly, with the aim of data-driven intelligent decision making. Thus, we have bestowed a comprehensive study on this topic that explores multi-dimensional contexts in machine learning modeling, context discretization with time-series modeling, contextual rule discovery and predictive analytics, recent-pattern or rule-based behavior modeling, and their usefulness in various context-aware intelligent applications and services. The presented machine learning-based techniques can be employed in a wide range of real-world application areas ranging from personalized mobile services to security intelligence, highlighted in the book. As the interpretability of a rule-based system is high, the automation in discovering rules from contextual raw data can make this book more impactful for the application developers as well as researchers. Overall, this book provides a good reference for both academia and industry people in the broad area of data science, machine learning, AI-Driven computing, human-centered computing and personalization, behavioral analytics, IoT and mobile applications, and cybersecurity intelligence.
This book presents the state-of-the-art in various aspects of analysis and mining of online social networks. Within the broader context of online social networks, it focuses on important and upcoming topics of social network analysis and mining such as the latest in sentiment trends research and a variety of techniques for community detection and analysis. The book collects chapters that are expanded versions of the best papers presented at the IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM'2015), which was held in Paris, France in August 2015. All papers have been peer reviewed and checked carefully for overlap with the literature. The book will appeal to students and researchers in social network analysis/mining and machine learning.
In the fields of data mining and control, the huge amount of unstructured data and the presence of uncertainty in system descriptions have always been critical issues. The book Randomized Algorithms in Automatic Control and Data Mining introduces the readers to the fundamentals of randomized algorithm applications in data mining (especially clustering) and in automatic control synthesis. The methods proposed in this book guarantee that the computational complexity of classical algorithms and the conservativeness of standard robust control techniques will be reduced. It is shown that when a problem requires "brute force" in selecting among options, algorithms based on random selection of alternatives offer good results with certain probability for a restricted time and significantly reduce the volume of operations. |
![]() ![]() You may like...
Commutative Harmonic Analysis, Pt. 3…
Viktor Petrovich Khavin, N.K. Nikolskii
Hardcover
R2,642
Discovery Miles 26 420
Structure-Preserving Doubling Algorithms…
Tsung-Ming Huang, Ren-Cang Li, …
Paperback
R1,778
Discovery Miles 17 780
An Introduction to XML and Web…
Anders Moller, Michael Schwartzbach
Paperback
R2,774
Discovery Miles 27 740
Visualizing Information Using SVG and…
Vladimir Geroimenko, Chaomei Chen
Hardcover
R4,623
Discovery Miles 46 230
Java How to Program, Late Objects…
Paul Deitel, Harvey Deitel
Paperback
|