![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > Applications of computing > Databases > Data mining
This book presents recent machine learning paradigms and advances in learning analytics, an emerging research discipline concerned with the collection, advanced processing, and extraction of useful information from both educators' and learners' data with the goal of improving education and learning systems. In this context, internationally respected researchers present various aspects of learning analytics and selected application areas, including: * Using learning analytics to measure student engagement, to quantify the learning experience and to facilitate self-regulation; * Using learning analytics to predict student performance; * Using learning analytics to create learning materials and educational courses; and * Using learning analytics as a tool to support learners and educators in synchronous and asynchronous eLearning. The book offers a valuable asset for professors, researchers, scientists, engineers and students of all disciplines. Extensive bibliographies at the end of each chapter guide readers to probe further into their application areas of interest.
This book describes the application of modern information technology to reservoir modeling and well management in shale. While covering Shale Analytics, it focuses on reservoir modeling and production management of shale plays, since conventional reservoir and production modeling techniques do not perform well in this environment. Topics covered include tools for analysis, predictive modeling and optimization of production from shale in the presence of massive multi-cluster, multi-stage hydraulic fractures. Given the fact that the physics of storage and fluid flow in shale are not well-understood and well-defined, Shale Analytics avoids making simplifying assumptions and concentrates on facts (Hard Data - Field Measurements) to reach conclusions. Also discussed are important insights into understanding completion practices and re-frac candidate selection and design. The flexibility and power of the technique is demonstrated in numerous real-world situations.
This book brings all of the elements of data mining together in a
single volume, saving the reader the time and expense of making
multiple purchases. It consolidates both introductory and advanced
topics, thereby covering the gamut of data mining and machine
learning tactics ? from data integration and pre-processing, to
fundamental algorithms, to optimization techniques and web mining
methodology.
The academic landscape has been significantly enhanced by the advent of new technology. These tools allow researchers easier information access to better increase their knowledge base. Research 2.0 and the Impact of Digital Technologies on Scholarly Inquiry is an authoritative reference source for the latest insights on the impact of web services and social technologies for conducting academic research. Highlighting international perspectives, emerging scholarly practices, and real-world contexts, this book is ideally designed for academicians, practitioners, upper-level students, and professionals interested in the growing field of digital scholarship.
This book provides two general granular computing approaches to mining relational data, the first of which uses abstract descriptions of relational objects to build their granular representation, while the second extends existing granular data mining solutions to a relational case. Both approaches make it possible to perform and improve popular data mining tasks such as classification, clustering, and association discovery. How can different relational data mining tasks best be unified? How can the construction process of relational patterns be simplified? How can richer knowledge from relational data be discovered? All these questions can be answered in the same way: by mining relational data in the paradigm of granular computing! This book will allow readers with previous experience in the field of relational data mining to discover the many benefits of its granular perspective. In turn, those readers familiar with the paradigm of granular computing will find valuable insights on its application to mining relational data. Lastly, the book offers all readers interested in computational intelligence in the broader sense the opportunity to deepen their understanding of the newly emerging field granular-relational data mining.
Mohamed Medhat Gaber "It is not my aim to surprise or shock you - but the simplest way I can summarise is to say that there are now in the world machines that think, that learn and that create. Moreover, their ability to do these things is going to increase rapidly until - in a visible future - the range of problems they can handle will be coextensive with the range to which the human mind has been applied" by Herbert A. Simon (1916-2001) 1Overview This book suits both graduate students and researchers with a focus on discovering knowledge from scienti c data. The use of computational power for data analysis and knowledge discovery in scienti c disciplines has found its roots with the re- lution of high-performance computing systems. Computational science in physics, chemistry, and biology represents the rst step towards automation of data analysis tasks. The rational behind the developmentof computationalscience in different - eas was automating mathematical operations performed in those areas. There was no attention paid to the scienti c discovery process. Automated Scienti c Disc- ery (ASD) [1-3] represents the second natural step. ASD attempted to automate the process of theory discovery supported by studies in philosophy of science and cognitive sciences. Although early research articles have shown great successes, the area has not evolved due to many reasons. The most important reason was the lack of interaction between scientists and the automating systems.
Hyperspectral Image Fusion is the first text dedicated to the fusion techniques for such a huge volume of data consisting of a very large number of images. This monograph brings out recent advances in the research in the area of visualization of hyperspectral data. It provides a set of pixel-based fusion techniques, each of which is based on a different framework and has its own advantages and disadvantages. The techniques are presented with complete details so that practitioners can easily implement them. It is also demonstrated how one can select only a few specific bands to speed up the process of fusion by exploiting spatial correlation within successive bands of the hyperspectral data. While the techniques for fusion of hyperspectral images are being developed, it is also important to establish a framework for objective assessment of such techniques. This monograph has a dedicated chapter describing various fusion performance measures that are applicable to hyperspectral image fusion. This monograph also presents a notion of consistency of a fusion technique which can be used to verify the suitability and applicability of a technique for fusion of a very large number of images. This book will be a highly useful resource to the students, researchers, academicians and practitioners in the specific area of hyperspectral image fusion, as well as generic image fusion.
The rate at which geospatial data is being generated exceeds our computational capabilities to extract patterns for the understanding of a dynamically changing world. Geoinformatics and data mining focuses on the development and implementation of computational algorithms to solve these problems. This unique volume contains a collection of chapters on state-of-the-art data mining techniques applied to geoinformatic problems of high complexity and important societal value. Data Mining for Geoinformatics addresses current concerns and developments relating to spatio-temporal data mining issues in remotely-sensed data, problems in meteorological data such as tornado formation, estimation of radiation from the Fukushima nuclear power plant, simulations of traffic data using OpenStreetMap, real time traffic applications of data stream mining, visual analytics of traffic and weather data and the exploratory visualization of collective, mobile objects such as the flocking behavior of wild chickens. This book is designed for researchers and advanced-level students focused on computer science, earth science and geography as a reference or secondary text book. Practitioners working in the areas of data mining and geoscience will also find this book to be a valuable reference.
This book addresses the challenges of social network and social media analysis in terms of prediction and inference. The chapters collected here tackle these issues by proposing new analysis methods and by examining mining methods for the vast amount of social content produced. Social Networks (SNs) have become an integral part of our lives; they are used for leisure, business, government, medical, educational purposes and have attracted billions of users. The challenges that stem from this wide adoption of SNs are vast. These include generating realistic social network topologies, awareness of user activities, topic and trend generation, estimation of user attributes from their social content, and behavior detection. This text has applications to widely used platforms such as Twitter and Facebook and appeals to students, researchers, and professionals in the field.
This book presents the proceedings of Workshops and Posters at the 13th International Conference on Spatial Information Theory (COSIT 2017), which is concerned with all aspects of space and spatial environments as experienced, represented and elaborated by humans, other animals and artificial agents. Complementing the main conference proceedings, workshop papers and posters investigate specialized research questions or challenges in spatial information theory and closely related topics, including advances in the conceptualization of specific spatio-temporal domains and diverse applications of spatial and temporal information.
This book describes analytical techniques for optimizing knowledge acquisition, processing, and propagation, especially in the contexts of cyber-infrastructure and big data. Further, it presents easy-to-use analytical models of knowledge-related processes and their applications. The need for such methods stems from the fact that, when we have to decide where to place sensors, or which algorithm to use for processing the data-we mostly rely on experts' opinions. As a result, the selected knowledge-related methods are often far from ideal. To make better selections, it is necessary to first create easy-to-use models of knowledge-related processes. This is especially important for big data, where traditional numerical methods are unsuitable. The book offers a valuable guide for everyone interested in big data applications: students looking for an overview of related analytical techniques, practitioners interested in applying optimization techniques, and researchers seeking to improve and expand on these techniques.
This book offers a coherent and comprehensive approach to feature subset selection in the scope of classification problems, explaining the foundations, real application problems and the challenges of feature selection for high-dimensional data. The authors first focus on the analysis and synthesis of feature selection algorithms, presenting a comprehensive review of basic concepts and experimental results of the most well-known algorithms. They then address different real scenarios with high-dimensional data, showing the use of feature selection algorithms in different contexts with different requirements and information: microarray data, intrusion detection, tear film lipid layer classification and cost-based features. The book then delves into the scenario of big dimension, paying attention to important problems under high-dimensional spaces, such as scalability, distributed processing and real-time processing, scenarios that open up new and interesting challenges for researchers. The book is useful for practitioners, researchers and graduate students in the areas of machine learning and data mining.
Provides readers with the methods, algorithms, and means to perform text mining tasks This book is devoted to the fundamentals of text mining using Perl, an open-source programming tool that is freely available via the Internet (www.perl.org). It covers mining ideas from several perspectives--statistics, data mining, linguistics, and information retrieval--and provides readers with the means to successfully complete text mining tasks on their own. The book begins with an introduction to regular expressions, a text pattern methodology, and quantitative text summaries, all of which are fundamental tools of analyzing text. Then, it builds upon this foundation to explore: Probability and texts, including the bag-of-words model Information retrieval techniques such as the TF-IDF similarity measure Concordance lines and corpus linguistics Multivariate techniques such as correlation, principal components analysis, and clustering Perl modules, German, and permutation tests Each chapter is devoted to a single key topic, and the author carefully and thoughtfully introduces mathematical concepts as they arise, allowing readers to learn as they go without having to refer to additional books. The inclusion of numerous exercises and worked-out examples further complements the book's student-friendly format. Practical Text Mining with Perl is ideal as a textbook for undergraduate and graduate courses in text mining and as a reference for a variety of professionals who are interested in extracting information from text documents.
This book focuses on the development of wellness protocols for smart home monitoring, aiming to forecast the wellness of individuals living in ambient assisted living (AAL) environments. It describes in detail the design and implementation of heterogeneous wireless sensors and networks as applied to data mining and machine learning, which the protocols are based on. Further, it shows how these sensor and actuator nodes are deployed in the home environment, generating real-time data on object usage and other movements inside the home, and therefore demonstrates that the protocols have proven to offer a reliable, efficient, flexible, and economical solution for smart home systems. Documenting the approach from sensor to decision making and information generation, the book addresses various issues concerning interference mitigation, errors, security and large data handling. As such, it offers a valuable resource for researchers, students and practitioners interested in interdisciplinary studies at the intersection of wireless sensing processing, radio communication, the Internet of Things and machine learning, and in how they can be applied to smart home monitoring and assisted living environments.
The IEEE ICDM 2004 workshop on the Foundation of Data Mining and the IEEE ICDM 2005 workshop on the Foundation of Semantic Oriented Data and Web Mining focused on topics ranging from the foundations of data mining to new data mining paradigms. The workshops brought together both data mining researchers and practitioners to discuss these two topics while seeking solutions to long standing data mining problems and stimul- ing new data mining research directions. We feel that the papers presented at these workshops may encourage the study of data mining as a scienti?c ?eld and spark new communications and collaborations between researchers and practitioners. Toexpressthevisionsforgedintheworkshopstoawiderangeofdatam- ing researchers and practitioners and foster active participation in the study of foundations of data mining, we edited this volume by involving extended and updated versions of selected papers presented at those workshops as well as some other relevant contributions. The content of this book includes st- ies of foundations of data mining from theoretical, practical, algorithmical, and managerial perspectives. The following is a brief summary of the papers contained in this book.
When Don Swanson hypothesized a connection between Raynaud's phenomenon anddietary?shoil, the?eldofliterature-baseddiscovery(LBD)wasborn. During thesubsequenttwodecadesasteadystreamofresearchershavepublishedarticles aboutLBDandthe?eldhasmadesteadyprogressinlayingfoundationsandc- ating an identity. It is curiously signi?cant that LBD is not "owned" by any p- ticulardiscipline, forexample, knowledge discoveryortextmining. Rather, LBD researchersoriginatefromarangeof?eldsincludinginformationscience, infor- tionretrieval, logic, andthebiomedicalsciences. Thisre?ectsthefactLBDisan inherentlymulti-disciplinaryenterprisewherecollaborationsbetweentheinfor- tionandbiomedicalsciencesarereadilyencountered. Thismulti-disciplinaryaspect ofLBDhasmadeitharderforthe?eldtoplanta?ag, sotospeak. Thepresentv- umecanbeseenasanattempttoredressthis. Itpresentschaptersprovidingabroad brushstrokeofLBDbyleadingresearchersprovidinganoverviewofthestateofthe art, themodelsandtheoriesused, experimentalstudies, lessonslearnt, application areas, andfuturechallenges. Inshort, itattemptstoconveyalearnedimpressionof whereandhowLBDisbeingdeployed. DonSwansonhaskindlyagreedtoprovide theintroductorychapter. Itisthehopeandintentionthatthisvolumewillplanta ?aginthegroundandinspirenewresearcherstotheLBDchallenge. PeterBruza July2007 MarcWeeber v Contents Preface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Contributors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix Part I General Outlook and Possibilities Literature-Based Discovery? The Very Idea . . . . . . . . . . . . . . . . . . . . . . . . . 3 D. R. Swanson The Place of Literature-Based Discovery in Contemporary Scienti?c Practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 NeilR. SmalheiserandVetleI. Torvik The Tip of the Iceberg: The Quest for Innovation at the Base of the Pyramid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 M. D. GordonandN. F. Awad The 'Open Discovery' Challenge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 JonathanD. Wren Where is the Discovery in Literature-Based Discovery?. . . . . . . . . . . . . . . . 57 R. N. Kostoff Part II Methodology and Applications Analyzing LBD Methods using a General Framework. . . . . . . . . . . . . . . . . 75 A. K. Sehgal, X. Y. Qiu, andP. Srinivasan Evaluation of Literature-Based Discovery Systems. . . . . . . . . . . . . . . . . . . . 101 M. Yetisgen-YildizandW. Pratt vii viii Contents Factor Analytic Approach to Transitive Text Mining using Medline Descriptors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 J. StegmannandG. Grohmann Literature-Based Knowledge Discovery using Natural Language Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 D. Hristovski, C. Friedman, T. C. Rind?esch, andB. Peterlin Information Retrieval in Literature-Based Discovery. . . . . . . . . . . . . . . . . . 153 W. Hersh Biomedical Application of Knowledge Discovery . . . . . . . . . . . . . . . . . . . . . 173 A. Koike Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 Contributors NeveenFaragAwad SchoolofBusiness, WayneStateUniversity, USA CarolFriedman
This book presents the Recommender System for Improving Customer Loyalty. New and innovative products have begun appearing from a wide variety of countries, which has increased the need to improve the customer experience. When a customer spends hundreds of thousands of dollars on a piece of equipment, keeping it running efficiently is critical to achieving the desired return on investment. Moreover, managers have discovered that delivering a better customer experience pays off in a number of ways. A study of publicly traded companies conducted by Watermark Consulting found that from 2007 to 2013, companies with a better customer service generated a total return to shareholders that was 26 points higher than the S&P 500. This is only one of many studies that illustrate the measurable value of providing a better service experience. The Recommender System presented here addresses several important issues. (1) It provides a decision framework to help managers determine which actions are likely to have the greatest impact on the Net Promoter Score. (2) The results are based on multiple clients. The data mining techniques employed in the Recommender System allow users to "learn" from the experiences of others, without sharing proprietary information. This dramatically enhances the power of the system. (3) It supplements traditional text mining options. Text mining can be used to identify the frequency with which topics are mentioned, and the sentiment associated with a given topic. The Recommender System allows users to view specific, anonymous comments associated with actual customers. Studying these comments can provide highly accurate insights into the steps that can be taken to improve the customer experience. (4) Lastly, the system provides a sensitivity analysis feature. In some cases, certain actions can be more easily implemented than others. The Recommender System allows managers to "weigh" these actions and determine which ones would have a greater impact.
Over the years, advances in the business world as well as the changing of diverse application contexts, have caused Data Warehousing and Data Mining to become more paramount in our society. The two share many common issues and are commonly interrelated. Integrations of Data Warehousing, Data Mining and Database Technologies: Innovative Approaches provides a comprehensive compilation of knowledge covering state-of-the-art developments and research, as well as current innovative activities in data warehousing and mining. This book focuses on the integration between the fields of data warehousing and data mining, with emphasis on the applicability to real world problems and provides a broad perspective on the future of these two cohesive topic areas.
"Computational Analysis of Terrorist Groups: Lashkar-e-Taiba "provides an in-depth look at Web intelligence, and how advanced mathematics and modern computing technology can influence the insights we have on terrorist groups. This book primarily focuses on one famous terrorist group known as Lashkar-e-Taiba (or LeT), and how it operates.After 10 years of counter Al Qaeda operations, LeT is considered by many in the counter-terrorism community to be an even greater threat to the US and world peace than Al Qaeda. "Computational Analysis of Terrorist Groups: Lashkar-e-Taiba "is the first book that demonstrates how to use modern computational analysis techniques including methods for "big data" analysis. This book presents how to quantify both the environment in which LeT operate, and the actions it took over a 20-year period, and represent it as a relational database table. This table is then mined using sophisticated data mining algorithms in order to gain detailed, mathematical, computational and statistical insights into LeT and its operations.This book also provides a detailed history of Lashkar-e-Taiba based on extensive analysis conducted by using open source information and public statements. Each chapter includes a case study, as well as a slide describing the key results which are available on the authors' web sites. "Computational Analysis of Terrorist Groups: Lashkar-e-Taiba "is designed for a professional market composed of government or military workers, researchers and computer scientists working in the web intelligence field. Advanced-level students in computer science will also find this valuable as a reference book."
Advances in social science research methodologies and data analytic methods are changing the way research in information systems is conducted. New developments in statistical software technologies for data mining (DM) such as regression splines or decision tree induction can be used to assist researchers in systematic post-positivist theory testing and development. Established management science techniques like data envelopment analysis (DEA), and value focused thinking (VFT) can be used in combination with traditional statistical analysis and data mining techniques to more effectively explore behavioral questions in information systems research. As adoption and use of these research methods expand, there is growing need for a resource book to assist doctoral students and advanced researchers in understanding their potential to contribute to a broad range of research problems. "Advances in Research Methods for Information Systems Research: Data Mining, Data Envelopment Analysis, Value Focused Thinking" focuses on bridging and unifying these three different methodologies in order to bring them together in a unified volume for the information systems community. This book serves as a resource that provides overviews on each method, as well as applications on how they can be employed to address IS research problems. Its goal is to help researchers in their continuous efforts to set the pace for having an appropriate interplay between behavioral research and design science.
Web mining has become a popular area of research, integrating the different research areas of data mining and the World Wide Web. According to the taxonomy of Web mining, there are three sub-fields of Web-mining research: Web usage mining, Web content mining and Web structure mining. These three research fields cover most content and activities on the Web. With the rapid growth of the World Wide Web, Web mining has become a hot topic and is now part of the mainstream of Web - search, such as Web information systems and Web intelligence. Among all of the possible applications in Web research, e-commerce and e-services have been iden- fied as important domains for Web-mining techniques. Web-mining techniques also play an important role in e-commerce and e-services, proving to be useful tools for understanding how e-commerce and e-service Web sites and services are used, e- bling the provision of better services for customers and users. Thus, this book will focus upon Web-mining applications in e-commerce and e-services. Some chapters in this book are extended from the papers that presented in WMEE 2008 (the 2nd International Workshop for E-commerce and E-services). In addition, we also sent invitations to researchers that are famous in this research area to contr- ute for this book. The chapters of this book are introduced as follows: In chapter 1, Peter I.
This book provides a general and comprehensible overview of supervised descriptive pattern mining, considering classic algorithms and those based on heuristics. It provides some formal definitions and a general idea about patterns, pattern mining, the usefulness of patterns in the knowledge discovery process, as well as a brief summary on the tasks related to supervised descriptive pattern mining. It also includes a detailed description on the tasks usually grouped under the term supervised descriptive pattern mining: subgroups discovery, contrast sets and emerging patterns. Additionally, this book includes two tasks, class association rules and exceptional models, that are also considered within this field. A major feature of this book is that it provides a general overview (formal definitions and algorithms) of all the tasks included under the term supervised descriptive pattern mining. It considers the analysis of different algorithms either based on heuristics or based on exhaustive search methodologies for any of these tasks. This book also illustrates how important these techniques are in different fields, a set of real-world applications are described. Last but not least, some related tasks are also considered and analyzed. The final aim of this book is to provide a general review of the supervised descriptive pattern mining field, describing its tasks, its algorithms, its applications, and related tasks (those that share some common features). This book targets developers, engineers and computer scientists aiming to apply classic and heuristic-based algorithms to solve different kinds of pattern mining problems and apply them to real issues. Students and researchers working in this field, can use this comprehensive book (which includes its methods and tools) as a secondary textbook.
Dynamic programming is an efficient technique for solving optimization problems. It is based on breaking the initial problem down into simpler ones and solving these sub-problems, beginning with the simplest ones. A conventional dynamic programming algorithm returns an optimal object from a given set of objects. This book develops extensions of dynamic programming, enabling us to (i) describe the set of objects under consideration; (ii) perform a multi-stage optimization of objects relative to different criteria; (iii) count the number of optimal objects; (iv) find the set of Pareto optimal points for bi-criteria optimization problems; and (v) to study relationships between two criteria. It considers various applications, including optimization of decision trees and decision rule systems as algorithms for problem solving, as ways for knowledge representation, and as classifiers; optimization of element partition trees for rectangular meshes, which are used in finite element methods for solving PDEs; and multi-stage optimization for such classic combinatorial optimization problems as matrix chain multiplication, binary search trees, global sequence alignment, and shortest paths. The results presented are useful for researchers in combinatorial optimization, data mining, knowledge discovery, machine learning, and finite element methods, especially those working in rough set theory, test theory, logical analysis of data, and PDE solvers. This book can be used as the basis for graduate courses. |
You may like...
Numerical Analysis
Annette M Burden, Richard Burden, …
Hardcover
Mathematics Lesson Study Around the…
Marisa Quaresma, Carl Winslow, …
Hardcover
R3,106
Discovery Miles 31 060
The Sourcebook of Parallel Computing
Jack Dongarra, Ian Foster, …
Hardcover
R1,988
Discovery Miles 19 880
Financial Mathematics - A Computational…
K. Pereira, N. Modhien, …
Paperback
R326
Discovery Miles 3 260
|