![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > Applications of computing > Databases > Data mining
Web usage mining is defined as the application of data mining technologies to online usage patterns as a way to better understand and serve the needs of web-based applications. Because the internet has become a central component in information sharing and commerce, having the ability to analyze user behavior on the web has become a critical component to a variety of industries. Web Usage Mining Techniques and Applications Across Industries addresses the systems and methodologies that enable organizations to predict web user behavior as a way to support website design and personalization of web-based services and commerce. Featuring perspectives from a variety of sectors, this publication is designed for use by IT specialists, business professionals, researchers, and graduate-level students interested in learning more about the latest concepts related to web-based information retrieval and mining.
This volume is aiming at a wide range of readers and researchers in the area of Big Data by presenting the recent advances in the fields of Big Data Analysis, as well as the techniques and tools used to analyze it. The book includes 10 distinct chapters providing a concise introduction to Big Data Analysis and recent Techniques and Environments for Big Data Analysis. It gives insight into how the expensive fitness evaluation of evolutionary learning can play a vital role in big data analysis by adopting Parallel, Grid, and Cloud computing environments.
This book provides a technical approach to a Business Resilience System with its Risk Atom and Processing Data Point based on fuzzy logic and cloud computation in real time. Its purpose and objectives define a clear set of expectations for Organizations and Enterprises so their network system and supply chain are totally resilient and protected against cyber-attacks, manmade threats, and natural disasters. These enterprises include financial, organizational, homeland security, and supply chain operations with multi-point manufacturing across the world. Market shares and marketing advantages are expected to result from the implementation of the system. The collected information and defined objectives form the basis to monitor and analyze the data through cloud computation, and will guarantee the success of their survivability's against any unexpected threats. This book will be useful for advanced undergraduate and graduate students in the field of computer engineering, engineers that work for manufacturing companies, business analysts in retail and e-Commerce, and those working in the defense industry, Information Security, and Information Technology.
Tools and methods from complex systems science can have a considerable impact on the way in which the quantitative assessment of economic and financial issues is approached, as discussed in this thesis. First it is shown that the self-organization of financial markets is a crucial factor in the understanding of their dynamics. In fact, using an agent-based approach, it is argued that financial markets' stylized facts appear only in the self-organized state. Secondly, the thesis points out the potential of so-called big data science for financial market modeling, investigating how web-driven data can yield a picture of market activities: it has been found that web query volumes anticipate trade volumes. As a third achievement, the metrics developed here for country competitiveness and product complexity is groundbreaking in comparison to mainstream theories of economic growth and technological development. A key element in assessing the intangible variables determining the success of countries in the present globalized economy is represented by the diversification of the productive basket of countries. The comparison between the level of complexity of a country's productive system and economic indicators such as the GDP per capita discloses its hidden growth potential.
Solving nonsmooth optimization (NSO) problems is critical in many practical applications and real-world modeling systems. The aim of this book is to survey various numerical methods for solving NSO problems and to provide an overview of the latest developments in the field. Experts from around the world share their perspectives on specific aspects of numerical NSO. The book is divided into four parts, the first of which considers general methods including subgradient, bundle and gradient sampling methods. In turn, the second focuses on methods that exploit the problem's special structure, e.g. algorithms for nonsmooth DC programming, VU decomposition techniques, and algorithms for minimax and piecewise differentiable problems. The third part considers methods for special problems like multiobjective and mixed integer NSO, and problems involving inexact data, while the last part highlights the latest advancements in derivative-free NSO. Given its scope, the book is ideal for students attending courses on numerical nonsmooth optimization, for lecturers who teach optimization courses, and for practitioners who apply nonsmooth optimization methods in engineering, artificial intelligence, machine learning, and business. Furthermore, it can serve as a reference text for experts dealing with nonsmooth optimization.
This book presents innovative work in Climate Informatics, a new field that reflects the application of data mining methods to climate science, and shows where this new and fast growing field is headed. Given its interdisciplinary nature, Climate Informatics offers insights, tools and methods that are increasingly needed in order to understand the climate system, an aspect which in turn has become crucial because of the threat of climate change. There has been a veritable explosion in the amount of data produced by satellites, environmental sensors and climate models that monitor, measure and forecast the earth system. In order to meaningfully pursue knowledge discovery on the basis of such voluminous and diverse datasets, it is necessary to apply machine learning methods, and Climate Informatics lies at the intersection of machine learning and climate science. This book grew out of the fourth workshop on Climate Informatics held in Boulder, Colorado in Sep. 2014.
Web-based Support Systems (WSS) are an emerging multidisciplinary research area in which one studies the support of human activities with the Web as the common platform, mediumandinterface.TheInternetaffectseveryaspectofourmodernlife. Moving support systems to online is an increasing trend in many research domains. One of the goals of WSS research is to extend the human physical limitation of information processing in the information age. Research on WSS is motivated by the challenges and opportunities arising from the Internet. The availability, accessibility and ?exibility of information as well as the tools to access this information lead to a vast amount of opportunities. H- ever, there are also many challenges we face. For instance, we have to deal with more complex tasks, as there are increasing demands for quality and productivity. WSS research is a natural evolution of the studies on various computerized support systems such as Decision Support Systems (DSS), Computer Aided Design (CAD), and Computer Aided Software Engineering (CASE). The recent advancement of computer and Web technologies make the implementation of more feasible WSS. Nowadays, it is rare to see a system without some type of Web interaction. The research of WSS is classi?ed into four groups. WSS for speci?c domains."
This carefully edited and reviewed volume addresses the increasingly popular demand for seeking more clarity in the data that we are immersed in. It offers excellent examples of the intelligent ubiquitous computation, as well as recent advances in systems engineering and informatics. The content represents state-of-the-art foundations for researchers in the domain of modern computation, computer science, system engineering and networking, with many examples that are set in industrial application context. The book includes the carefully selected best contributions to APCASE 2014, the 2nd Asia-Pacific Conference on Computer Aided System Engineering, held February 10-12, 2014 in South Kuta, Bali, Indonesia. The book consists of four main parts that cover data-oriented engineering science research in a wide range of applications: computational models and knowledge discovery; communications networks and cloud computing; computer-based systems; and data-oriented and software-intensive systems.
Describing novel mathematical concepts for recommendation engines, Realtime Data Mining: Self-Learning Techniques for Recommendation Engines features a sound mathematical framework unifying approaches based on control and learning theories, tensor factorization, and hierarchical methods. Furthermore, it presents promising results of numerous experiments on real-world data. The area of realtime data mining is currently developing at an exceptionally dynamic pace, and realtime data mining systems are the counterpart of today's "classic" data mining systems. Whereas the latter learn from historical data and then use it to deduce necessary actions, realtime analytics systems learn and act continuously and autonomously. In the vanguard of these new analytics systems are recommendation engines. They are principally found on the Internet, where all information is available in realtime and an immediate feedback is guaranteed. This monograph appeals to computer scientists and specialists in machine learning, especially from the area of recommender systems, because it conveys a new way of realtime thinking by considering recommendation tasks as control-theoretic problems. Realtime Data Mining: Self-Learning Techniques for Recommendation Engines will also interest application-oriented mathematicians because it consistently combines some of the most promising mathematical areas, namely control theory, multilevel approximation, and tensor factorization.
This volume directly addresses the complexities involved in data mining and the development of new algorithms, built on an underlying theory consisting of linear and non-linear dynamics, data selection, filtering, and analysis, while including analytical projection and prediction. The results derived from the analysis are then further manipulated such that a visual representation is derived with an accompanying analysis. The book brings very current methods of analysis to the forefront of the discipline, provides researchers and practitioners the mathematical underpinning of the algorithms, and the non-specialist with a visual representation such that a valid understanding of the meaning of the adaptive system can be attained with careful attention to the visual representation. The book presents, as a collection of documents, sophisticated and meaningful methods that can be immediately understood and applied to various other disciplines of research. The content is composed of chapters addressing: An application of adaptive systems methodology in the field of post-radiation treatment involving brain volume differences in children; A new adaptive system for computer-aided diagnosis of the characterization of lung nodules; A new method of multi-dimensional scaling with minimal loss of information; A description of the semantics of point spaces with an application on the analysis of terrorist attacks in Afghanistan; The description of a new family of meta-classifiers; A new method of optimal informational sorting; A general method for the unsupervised adaptive classification for learning; and the presentation of two new theories, one in target diffusion and the other in twisting theory.
This book constitutes the refereed proceedings of the Third International Conference on Intelligence Science, ICIS 2018, held in Beijing China, in November 2018. The 44 full papers and 5 short papers presented were carefully reviewed and selected from 85 submissions. They deal with key issues in intelligence science and have been organized in the following topical sections: brain cognition; machine learning; data intelligence; language cognition; perceptual intelligence; intelligent robots; fault diagnosis; and ethics of artificial intelligence.
Data warehousing is an important topic that is of interest to both the industry and the knowledge engineering research communities. Both data mining and data warehousing technologies have similar objectives and can potentially benefit from each other's methods to facilitate knowledge discovery. Improving Knowledge Discovery through the Integration of Data Mining Techniques provides insight concerning the integration of data mining and data warehousing for enhancing the knowledge discovery process. Decision makers, academicians, researchers, advanced-level students, technology developers, and business intelligence professionals will find this book useful in furthering their research exposure to relevant topics in knowledge discovery.
The topic of preferences is a new branch of machine learning and data mining, and it has attracted considerable attention in artificial intelligence research in previous years. It involves learning from observations that reveal information about the preferences of an individual or a class of individuals. Representing and processing knowledge in terms of preferences is appealing as it allows one to specify desires in a declarative way, to combine qualitative and quantitative modes of reasoning, and to deal with inconsistencies and exceptions in a flexible manner. And, generalizing beyond training data, models thus learned may be used for preference prediction. This is the first book dedicated to this topic, and the treatment is comprehensive. The editors first offer a thorough introduction, including a systematic categorization according to learning task and learning technique, along with a unified notation. The first half of the book is organized into parts on label ranking, instance ranking, and object ranking; while the second half is organized into parts on applications of preference learning in multiattribute domains, information retrieval, and recommender systems. The book will be of interest to researchers and practitioners in artificial intelligence, in particular machine learning and data mining, and in fields such as multicriteria decision-making and operations research.
Community structure is a salient structural characteristic of
many real-world networks. Communities are generally hierarchical,
overlapping, multi-scale and coexist with other types of structural
regularities of networks. This poses major challenges for
conventional methods of community detection. This book will
comprehensively introduce the latest advances in community
detection, especially the detection of overlapping and hierarchical
community structures, the detection of multi-scale communities in
heterogeneous networks, and the exploration of multiple types of
structural regularities. These advances have been successfully
applied to analyze large-scale online social networks, such as
Facebook and Twitter. This book provides readers a convenient way
to grasp the cutting edge of community detection in complex
networks.
Organizations rely on data mining and warehousing technologies to store, integrate, query, and analyze essential data. Strategic Advancements in Utilizing Data Mining and Warehousing Technologies: New Concepts and Developments discusses developments in data mining and warehousing as well as techniques for successful implementation. Contributions investigate theoretical queries along with real-world applications, providing a useful foundation for academicians and practitioners to research new techniques and methodologies.
This book introduces the concepts, applications and development of data science in the telecommunications industry by focusing on advanced machine learning and data mining methodologies in the wireless networks domain. Mining Over Air describes the problems and their solutions for wireless network performance and quality, device quality readiness and returns analytics, wireless resource usage profiling, network traffic anomaly detection, intelligence-based self-organizing networks, telecom marketing, social influence, and other important applications in the telecom industry. Written by authors who study big data analytics in wireless networks and telecommunication markets from both industrial and academic perspectives, the book targets the pain points in telecommunication networks and markets through big data. Designed for both practitioners and researchers, the book explores the intersection between the development of new engineering technology and uses data from the industry to understand consumer behavior. It combines engineering savvy with insights about human behavior. Engineers will understand how the data generated from the technology can be used to understand the consumer behavior and social scientists will get a better understanding of the data generation process.
"Machine Learning and Data Mining for Computer Security" provides an overview of the current state of research in machine learning and data mining as it applies to problems in computer security. This book has a strong focus on information processing and combines and extends results from computer security. The first part of the book surveys the data sources, the learning and mining methods, evaluation methodologies, and past work relevant for computer security. The second part of the book consists of articles written by the top researchers working in this area. These articles deals with topics of host-based intrusion detection through the analysis of audit trails, of command sequences and of system calls as well as network intrusion detection through the analysis of TCP packets and the detection of malicious executables. This book fills the great need for a book that collects and frames work on developing and applying methods from machine learning and data mining to problems in computer security.
Interval computing combined with fuzzy logic has become an emerging tool in studying artificial intelligence and knowledge processing (AIKP) applications since it models uncertainties frequently raised in the field. This book provides introductions for both interval and fuzzy computing in a very accessible style. Application algorithms covered in this book include quantitative and qualitative data mining with interval valued datasets, decision making systems with interval valued parameters, interval valued Nash games and interval weighted graphs. Successful applications in studying finance and economics, etc are also included. This book can serve as a handbook or a text for readers interested in applying interval and soft computing for AIKP.
'Data Mining with Ontologies' examines methodologies and research for the development of ontological foundations for data mining.
The domains of Pattern Recognition and Machine Learning have experienced exceptional interest and growth, however the overwhelming number of methods and applications can make the fields seem bewildering. This text offers an accessible and conceptually rich introduction, a solid mathematical development emphasizing simplicity and intuition. Students beginning to explore pattern recognition do not need a suite of mathematically advanced methods or complicated computational libraries to understand and appreciate pattern recognition; rather the fundamental concepts and insights, eminently teachable at the undergraduate level, motivate this text. This book provides methods of analysis that the reader can realistically undertake on their own, supported by real-world examples, case-studies, and worked numerical / computational studies. |
![]() ![]() You may like...
Advances in Parallel and Distributed…
James J (Jong Hyuk) Park, Gangman Yi, …
Hardcover
Handbook of Research on Innovations in…
Jorge Tiago Martins, Andreea Molnar
Hardcover
R8,675
Discovery Miles 86 750
Non-equilibrium Statistical Physics with…
Manuel Osvaldo Caceres
Hardcover
R2,905
Discovery Miles 29 050
Compression and Coding Algorithms
Alistair Moffat, Andrew Turpin
Hardcover
R1,688
Discovery Miles 16 880
|