![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > Applications of computing > Databases > Data mining
This book features multi-omics big-data integration and data-mining techniques. In the omics age, paramount of multi-omics data from various sources is the new challenge we are facing, but it also provides clues for several biomedical or clinical applications. This book focuses on data integration and data mining methods for multi-omics research, which explains in detail and with supportive examples the “What”, “Why” and “How” of the topic. The contents are organized into eight chapters, out of which one is for the introduction, followed by four chapters dedicated for omics integration techniques focusing on several omics data resources and data-mining methods, and three chapters dedicated for applications of multi-omics analyses with application being demonstrated by several data mining methods. This book is an attempt to bridge the gap between the biomedical multi-omics big data and the data-mining techniques for the best practice of contemporary bioinformatics and the in-depth insights for the biomedical questions. It would be of interests for the researchers and practitioners who want to conduct the multi-omics studies in cancer, inflammation disease, and microbiome researches.
In the era of big data, this book explores the new challenges of urban-rural planning and management from a practical perspective based on a multidisciplinary project. Researchers as contributors to this book have accomplished their projects by using big data and relevant data mining technologies for investigating the possibilities of big data, such as that obtained through cell phones, social network systems and smart cards instead of conventional survey data for urban planning support. This book showcases active researchers who share their experiences and ideas on human mobility, accessibility and recognition of places, connectivity of transportation and urban structure in order to provide effective analytic and forecasting tools for smart city planning and design solutions in China.
Algorithms and Applications for Academic Search, Recommendation and Quantitative Association Rule Mining presents novel algorithms for academic search, recommendation and association rule mining that have been developed and optimized for different commercial as well as academic purpose systems. Along with the design and implementation of algorithms, a major part of the work presented in the book involves the development of new systems both for commercial as well as for academic use. In the first part of the book the author introduces a novel hierarchical heuristic scheme for re-ranking academic publications retrieved from standard digital libraries. The scheme is based on the hierarchical combination of a custom implementation of the term frequency heuristic, a time-depreciated citation score and a graph-theoretic computed score that relates the paper's index terms with each other. In order to evaluate the performance of the introduced algorithms, a meta-search engine has been designed and developed that submits user queries to standard digital repositories of academic publications and re-ranks the top-n results using the introduced hierarchical heuristic scheme. In the second part of the book the design of novel recommendation algorithms with application in different types of e-commerce systems are described. The newly introduced algorithms are a part of a developed Movie Recommendation system, the first such system to be commercially deployed in Greece by a major Triple Play services provider. The initial version of the system uses a novel hybrid recommender (user, item and content based) and provides daily recommendations to all active subscribers of the provider (currently more than 30,000). The recommenders that we are presenting are hybrid by nature, using an ensemble configuration of different content, user as well as item-based recommenders in order to provide more accurate recommendation results. The final part of the book presents the design of a quantitative association rule mining algorithm. Quantitative association rules refer to a special type of association rules of the form that antecedent implies consequent consisting of a set of numerical or quantitative attributes. The introduced mining algorithm processes a specific number of user histories in order to generate a set of association rules with a minimally required support and confidence value. The generated rules show strong relationships that exist between the consequent and the antecedent of each rule, representing different items that have been consumed at specific price levels. This research book will be of appeal to researchers, graduate students, professionals, engineers and computer programmers.
This compendium is a completely revised version of an earlier book, Data Mining in Time Series Databases, by the same editors. It provides a unique collection of new articles written by leading experts that account for the latest developments in the field of time series and data stream mining.The emerging topics covered by the book include weightless neural modeling for mining data streams, using ensemble classifiers for imbalanced and evolving data streams, document stream mining with active learning, and many more. In particular, it addresses the domain of streaming data, which has recently become one of the emerging topics in Data Science, Big Data, and related areas. Existing titles do not provide sufficient information on this topic.
Your logical, linear guide to the fundamentals of data science programming Data science is exploding--in a good way--with a forecast of 1.7 megabytes of new information created every second for each human being on the planet by 2020 and 11.5 million job openings by 2026. It clearly pays dividends to be in the know. This friendly guide charts a path through the fundamentals of data science and then delves into the actual work: linear regression, logical regression, machine learning, neural networks, recommender engines, and cross-validation of models. Data Science Programming All-In-One For Dummies is a compilation of the key data science, machine learning, and deep learning programming languages: Python and R. It helps you decide which programming languages are best for specific data science needs. It also gives you the guidelines to build your own projects to solve problems in real time. Get grounded: the ideal start for new data professionals What lies ahead: learn about specific areas that data is transforming Be meaningful: find out how to tell your data story See clearly: pick up the art of visualization Whether you're a beginning student or already mid-career, get your copy now and add even more meaning to your life--and everyone else's!
This book presents a series of studies that demonstrate the value of interactions between knowledge management with the arts and humanities. The carefully compiled chapters show, on the one hand, how traditional methods from the arts and humanities - e.g. theatrical improvisation, clay modelling, theory of aesthetics - can be used to enhance knowledge creation and evolution. On the other, the chapters discuss knowledge management models and practices such as virtual knowledge space (BA) design, social networking and knowledge sharing, data mining and knowledge discovery tools. The book also demonstrates how these practices can yield valuable benefits in terms of organizing and analyzing big arts and humanities data in a digital environment.
A visual approach to data mining. Data mining has been defined as the search for useful and previously unknown patterns in large datasets, yet when faced with the task of mining a large dataset, it is not always obvious where to start and how to proceed. This book introduces a visual methodology for data mining demonstrating the application of methodology along with a sequence of exercises using VisMiner. VisMiner has been developed by the author and provides a powerful visual data mining tool enabling the reader to see the data that they are working on and to visually evaluate the models created from the data. Key features: * Presents visual support for all phases of data mining including dataset preparation. * Provides a comprehensive set of non-trivial datasets and problems with accompanying software. * Features 3-D visualizations of multi-dimensional datasets. * Gives support for spatial data analysis with GIS like features. * Describes data mining algorithms with guidance on when and how to use. * Accompanied by VisMiner, a visual software tool for data mining, developed specifically to bridge the gap between theory and practice. Visual Data Mining: The VisMiner Approach is designed as a hands-on work book to introduce the methodologies to students in data mining, advanced statistics, and business intelligence courses. This book provides a set of tutorials, exercises, and case studies that support students in learning data mining processes. In praise of the VisMiner approach: "What we discovered among students was that the visualization concepts and tools brought the analysis alive in a way that was broadly understood and could be used to make sound decisions with greater certainty about the outcomes" Dr. James V. Hansen, J. Owen Cherrington Professor, Marriott School, Brigham Young University, USA "Students learn best when they are able to visualize relationships between data and results during the data mining process. VisMiner is easy to learn and yet offers great visualization capabilities throughout the data mining process. My students liked it very much and so did I." Dr. Douglas Dean, Assoc. Professor of Information Systems, Marriott School, Brigham Young University, USA
Data analysis is of upmost importance in the mining of big data, where knowledge discovery and inference are the basis for intelligent systems to support the real world applications. However, the process involves knowledge acquisition, representation, inference and data, Bayesian network (BN) is the key technology plays a key role in knowledge representation, in order to pave way to cope with incomplete, fuzzy data to solve the real-life problems.This book presents Bayesian network as a technology to support data-intensive and incremental learning in knowledge discovery, inference and data fusion in uncertain environment.
This book has two main goals: to define data science through the work of data scientists and their results, namely data products, while simultaneously providing the reader with relevant lessons learned from applied data science projects at the intersection of academia and industry. As such, it is not a replacement for a classical textbook (i.e., it does not elaborate on fundamentals of methods and principles described elsewhere), but systematically highlights the connection between theory, on the one hand, and its application in specific use cases, on the other. With these goals in mind, the book is divided into three parts: Part I pays tribute to the interdisciplinary nature of data science and provides a common understanding of data science terminology for readers with different backgrounds. These six chapters are geared towards drawing a consistent picture of data science and were predominantly written by the editors themselves. Part II then broadens the spectrum by presenting views and insights from diverse authors - some from academia and some from industry, ranging from financial to health and from manufacturing to e-commerce. Each of these chapters describes a fundamental principle, method or tool in data science by analyzing specific use cases and drawing concrete conclusions from them. The case studies presented, and the methods and tools applied, represent the nuts and bolts of data science. Finally, Part III was again written from the perspective of the editors and summarizes the lessons learned that have been distilled from the case studies in Part II. The section can be viewed as a meta-study on data science across a broad range of domains, viewpoints and fields. Moreover, it provides answers to the question of what the mission-critical factors for success in different data science undertakings are. The book targets professionals as well as students of data science: first, practicing data scientists in industry and academia who want to broaden their scope and expand their knowledge by drawing on the authors' combined experience. Second, decision makers in businesses who face the challenge of creating or implementing a data-driven strategy and who want to learn from success stories spanning a range of industries. Third, students of data science who want to understand both the theoretical and practical aspects of data science, vetted by real-world case studies at the intersection of academia and industry.
This book explores an approach to social robotics based solely on autonomous unsupervised techniques and positions it within a structured exposition of related research in psychology, neuroscience, HRI, and data mining. The authors present an autonomous and developmental approach that allows the robot to learn interactive behavior by imitating humans using algorithms from time-series analysis and machine learning. The first part provides a comprehensive and structured introduction to time-series analysis, change point discovery, motif discovery and causality analysis focusing on possible applicability to HRI problems. Detailed explanations of all the algorithms involved are provided with open-source implementations in MATLAB enabling the reader to experiment with them. Imitation and simulation are the key technologies used to attain social behavior autonomously in the proposed approach. Part two gives the reader a wide overview of research in these areas in psychology, and ethology. Based on this background, the authors discuss approaches to endow robots with the ability to autonomously learn how to be social. Data Mining for Social Robots will be essential reading for graduate students and practitioners interested in social and developmental robotics.
This book provides a readable and elegant presentation of the principles of anomaly detection,providing an easy introduction for newcomers to the field. A large number of algorithms are succinctly described, along with a presentation of their strengths and weaknesses. The authors also cover algorithms that address different kinds of problems of interest with single and multiple time series data and multi-dimensional data. New ensemble anomaly detection algorithms are described, utilizing the benefits provided by diverse algorithms, each of which work well on some kinds of data. With advancements in technology and the extensive use of the internet as a medium for communications and commerce, there has been a tremendous increase in the threats faced by individuals and organizations from attackers and criminal entities. Variations in the observable behaviors of individuals (from others and from their own past behaviors) have been found to be useful in predicting potential problems of various kinds. Hence computer scientists and statisticians have been conducting research on automatically identifying anomalies in large datasets. This book will primarily target practitioners and researchers who are newcomers to the area of modern anomaly detection techniques. Advanced-level students in computer science will also find this book helpful with their studies.
Managing and Mining Graph Data is a comprehensive survey book in
graph management and mining. It contains extensive surveys on a
variety of important graph topics such as graph languages,
indexing, clustering, data generation, pattern mining,
classification, keyword search, pattern matching, and privacy. It
also studies a number of domain-specific scenarios such as stream
mining, web graphs, social networks, chemical and biological data.
The chapters are written by well known researchers in the field,
and provide a broad perspective of the area. This is the first
comprehensive survey book in the emerging topic of graph data
processing.
This book presents a broad range of deep-learning applications related to vision, natural language processing, gene expression, arbitrary object recognition, driverless cars, semantic image segmentation, deep visual residual abstraction, brain-computer interfaces, big data processing, hierarchical deep learning networks as game-playing artefacts using regret matching, and building GPU-accelerated deep learning frameworks. Deep learning, an advanced level of machine learning technique that combines class of learning algorithms with the use of many layers of nonlinear units, has gained considerable attention in recent times. Unlike other books on the market, this volume addresses the challenges of deep learning implementation, computation time, and the complexity of reasoning and modeling different type of data. As such, it is a valuable and comprehensive resource for engineers, researchers, graduate students and Ph.D. scholars.
Multi-database mining has been recognized recently as an important and strategically essential area of research in data mining. In this book, we discuss various issues regarding the systematic and efficient development of multi-database mining applications. It explains how systematically one could prepare data warehouses at different branches. As appropriate multi-database mining technique is essential to develop better applications. Also, the efficiency of a multi-database mining application could be improved by processing more patterns in the application. A faster algorithm could also play an important role in developing a better application. Thus the efficiency of a multi-database mining application could be enhanced by choosing an appropriate multi-database mining model, an appropriate pattern synthesizing technique, a better pattern representation technique, and an efficient algorithm for solving the problem. This book illustrates each of these issues either in the context of a specific problem, or in general.
Observational calculi were introduced in the 1960's as a tool of logic of discovery. Formulas of observational calculi correspond to assertions on analysed data. Truthfulness of suitable assertions can lead to acceptance of new scientific hypotheses. The general goal was to automate the process of discovery of scientific knowledge using mathematical logic and statistics. The GUHA method for producing true formulas of observational calculi relevant to the given problem of scientific discovery was developed. Theoretically interesting and practically important results on observational calculi were achieved. Special attention was paid to formulas - couples of Boolean attributes derived from columns of the analysed data matrix. Association rules introduced in the 1990's can be seen as a special case of such formulas. New results on logical calculi and association rules were achieved. They can be seen as a logic of association rules. This can contribute to solving contemporary challenging problems of data mining research and practice. The book covers thoroughly the logic of association rules and puts it into the context of current research in data mining. Examples of applications of theoretical results to real problems are presented. New open problems and challenges are listed. Overall, the book is a valuable source of information for researchers as well as for teachers and students interested in data mining.
Cognitive Information Systems in Management Sciences summarizes the body of work in this area, taking an analytical approach to interpreting the data, while also providing an approach that can be used for practical implementation in the fields of computing, economics, and engineering. Using numerous illustrative examples, and following both theoretical and practical results, Dr. Lidia Ogiela discusses the concepts and principles of cognitive information systems, the relationship between intelligent computer data analysis, and how to utilize computational intelligent approaches to enhance information retrieval. Real world implantation use cases round out the book, with valuable scenarios covering management science, computer science, and engineering. Indexing: The books of this series are submitted to EI-Compendex and SCOPUS
This book shows healthcare professionals how to turn data points into meaningful knowledge upon which they can take effective action. Actionable intelligence can take many forms, from informing health policymakers on effective strategies for the population to providing direct and predictive insights on patients to healthcare providers so they can achieve positive outcomes. It can assist those performing clinical research where relevant statistical methods are applied to both identify the efficacy of treatments and improve clinical trial design. It also benefits healthcare data standards groups through which pertinent data governance policies are implemented to ensure quality data are obtained, measured, and evaluated for the benefit of all involved. Although the obvious constant thread among all of these important healthcare use cases of actionable intelligence is the data at hand, such data in and of itself merely represents one element of the full structure of healthcare data analytics. This book examines the structure for turning data into actionable knowledge and discusses: The importance of establishing research questions Data collection policies and data governance Principle-centered data analytics to transform data into information Understanding the "why" of classified causes and effects Narratives and visualizations to inform all interested parties Actionable Intelligence in Healthcare is an important examination of how proper healthcare-related questions should be formulated, how relevant data must be transformed to associated information, and how the processing of information relates to knowledge. It indicates to clinicians and researchers why this relative knowledge is meaningful and how best to apply such newfound understanding for the betterment of all.
The growth of machines and users of the Internet has led to the proliferation of all sorts of data concerning individuals, institutions, companies, governments, universities, and all kinds of known objects and events happening everywhere in daily life. Scientific knowledge is not an exception to the data boom. The phenomenon of data growth in science pushes forth as the number of scientific papers published doubles every 9-15 years, and the need for methods and tools to understand what is reported in scientific literature becomes evident. As the number of academicians and innovators swells, so do the number of publications of all types, yielding outlets of documents and depots of authors and institutions that need to be found in Bibliometric databases. These databases are dug into and treated to hand over metrics of research performance by means of Scientometrics that analyze the toil of individuals, institutions, journals, countries, and even regions of the world. The objective of this book is to assist students, professors, university managers, government, industry, and stakeholders in general, understand which are the main Bibliometric databases, what are the key research indicators, and who are the main players in university rankings and the methodologies and approaches that they employ in producing ranking tables. The book is divided into two sections. The first looks at Scientometric databases, including Scopus and Google Scholar as well as institutional repositories. The second section examines the application of Scientometrics to world-class universities and the role that Scientometrics can play in competition among them. It looks at university rankings and the methodologies used to create these rankings. Individual chapters examine specific rankings that include: QS World University Scimago Institutions Webometrics U-Multirank U.S. News & World Report The book concludes with a discussion of university performance in the age of research analytics.
This volume features selected, refereed papers on various aspects of statistics, matrix theory and its applications to statistics, as well as related numerical linear algebra topics and numerical solution methods, which are relevant for problems arising in statistics and in big data. The contributions were originally presented at the 25th International Workshop on Matrices and Statistics (IWMS 2016), held in Funchal (Madeira), Portugal on June 6-9, 2016. The IWMS workshop series brings together statisticians, computer scientists, data scientists and mathematicians, helping them better understand each other's tools, and fostering new collaborations at the interface of matrix theory and statistics.
This book has a collection of articles written by Big Data experts to describe some of the cutting-edge methods and applications from their respective areas of interest, and provides the reader with a detailed overview of the field of Big Data Analytics as it is practiced today. The chapters cover technical aspects of key areas that generate and use Big Data such as management and finance; medicine and healthcare; genome, cytome and microbiome; graphs and networks; Internet of Things; Big Data standards; bench-marking of systems; and others. In addition to different applications, key algorithmic approaches such as graph partitioning, clustering and finite mixture modelling of high-dimensional data are also covered. The varied collection of themes in this volume introduces the reader to the richness of the emerging field of Big Data Analytics.
Advances in Machine Learning and Data Mining for Astronomy documents numerous successful collaborations among computer scientists, statisticians, and astronomers who illustrate the application of state-of-the-art machine learning and data mining techniques in astronomy. Due to the massive amount and complexity of data in most scientific disciplines, the material discussed in this text transcends traditional boundaries between various areas in the sciences and computer science. The book's introductory part provides context to issues in the astronomical sciences that are also important to health, social, and physical sciences, particularly probabilistic and statistical aspects of classification and cluster analysis. The next part describes a number of astrophysics case studies that leverage a range of machine learning and data mining technologies. In the last part, developers of algorithms and practitioners of machine learning and data mining show how these tools and techniques are used in astronomical applications. With contributions from leading astronomers and computer scientists, this book is a practical guide to many of the most important developments in machine learning, data mining, and statistics. It explores how these advances can solve current and future problems in astronomy and looks at how they could lead to the creation of entirely new algorithms within the data mining community.
Web mining is the application of data mining strategies to excerpt learning from web information, i.e. web content, web structure, and web usage data. With the emergence of the web as the predominant and converging platform for communication, business and scholastic information dissemination, especially in the last five years, there are ever increasing research groups working on different aspects of web mining mainly in three directions. These are: mining of web content, web structure and web usage. In this context there are good number of frameworks and benchmarks related to the metrics of the websites which is certainly weighty for B2B, B2C and in general in any e-commerce paradigm. Owing to the popularity of this topic there are few books in the market, dealing more on such performance metrics and other related issues. This book, however, omits all such routine topics and lays more emphasis on the classification and clustering aspects of the websites in order to come out with the true perception of the websites in light of its usability. In nutshell, Web Mining: A Synergic Approach Resorting to Classifications and Clustering showcases an effective methodology for classification and clustering of web sites from their usability point of view. While the clustering and classification is accomplished by using an open source tool WEKA, the basic dataset for the selected websites has been emanated by using a free tool site-analyzer. As a case study, several commercial websites have been analyzed. The dataset preparation using site-analyzer and classification through WEKA by embedding different algorithms is one of the unique selling points of this book. This text projects a complete spectrum of web mining from its very inception through data mining and takes the reader up to the application level. Salient features of the book include: - Literature review of research work in the area of web mining - Business websites domain researched, and data collected using site-analyzer tool - Accessibility, design, text, multimedia, and networking are assessed - Datasets are filtered further by selecting vital attributes which are Search Engine Optimized for processing using the Weka attributed tool - Dataset with labels have been classified using J48, RBFNetwork, NaiveBayes, and SMO techniques using Weka - A comparative analysis of all classifiers is reported - Commercial applications for improving website performance based on SEO is given
Big Data in medical science - what exactly is that? What are the potentials for healthcare management? Where is Big Data at the moment? Which risk factors need to be kept in mind? What is hype and what is real potential? This book provides an impression of the new possibilities of networked data analysis and "Big Data" - for and within medical science and healthcare management. Big Data is about the collection, storage, search, distribution, statistical analysis and visualization of large amounts of data. This is especially relevant in healthcare management, as the amount of digital information is growing exponentially. An amount of data corresponding to 12 million novels emerges during the time of a single hospital stay. These are dimensions that cannot be dealt with without IT technologies. What can we do with the data that are available today? What will be possible in the next few years? Do we want everything that is possible? Who protects the data from wrong usage? More importantly, who protects the data from NOT being used? Big Data is the "resource of the 21st century" and might change the world of medical science more than we understand, realize and want at the moment. The core competence of Big Data will be the complete and correct collection, evaluation and interpretation of data. This also makes it possible to estimate the frame conditions and possibilities of the automation of daily (medical) routine. Can Big Data in medical science help to better understand fundamental problems of health and illness, and draw consequences accordingly? Big Data also means the overcoming of sector borders in healthcare management. The specialty of Big Data analysis will be the new quality of the outcomes of the combination of data that were not related before. That is why the editor of the book gives a voice to 30 experts, working in a variety of fields, such as in hospitals, in health insurance or as medical practitioners. The authors show potentials, risks, concrete practical examples, future scenarios, and come up with possible answers for the field of information technology and data privacy.
This book presents the recent achievements on the processing of representative user generated content (UGC) on E-commerce websites. This large size of UGC is valuable information for data mining to help customer/object profiling. It provides a comprehensive overview on the concept of customer credibility, object-oriented review summarization technology and content-based collaborative filtering algorithm. It covers a feedback mechanism which is designed to discover customer credibility, which is used to define the professional degree of review content; product-oriented review summarization for restaurants or trip arrangements, and introduced content-based collaborative filtering for product recommendation.
This book presents the recent achievements on the processing of representative user generated content (UGC) on E-commerce websites. This large size of UGC is valuable information for data mining to help customer/object profiling. It provides a comprehensive overview on the concept of customer credibility, object-oriented review summarization technology and content-based collaborative filtering algorithm. It covers a feedback mechanism which is designed to discover customer credibility, which is used to define the professional degree of review content; product-oriented review summarization for restaurants or trip arrangements, and introduced content-based collaborative filtering for product recommendation. |
You may like...
Big Data and Smart Service Systems
Xiwei Liu, Rangachari Anand, …
Hardcover
Exploring Advances in Interdisciplinary…
David Taniar, Lukman Hakim Iwan
Hardcover
R4,941
Discovery Miles 49 410
Intelligent Analysis of Multimedia…
Siddhartha Bhattacharyya, Hrishikesh Bhaumik, …
Hardcover
R5,617
Discovery Miles 56 170
Opinion Mining and Text Analytics on…
Pantea Keikhosrokiani, Moussa Pourya Asl
Hardcover
R9,276
Discovery Miles 92 760
|