![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > Applications of computing > Databases > Data mining
The two-volume set LNAI 11288 and 11289 constitutes the proceedings of the 17th Mexican International Conference on Artificial Intelligence, MICAI 2018, held in Guadalajara, Mexico, in October 2018. The total of 62 papers presented in these two volumes was carefully reviewed and selected from 149 submissions. The contributions are organized in topical as follows: Part I: evolutionary and nature-inspired intelligence; machine learning; fuzzy logic and uncertainty management. Part II: knowledge representation, reasoning, and optimization; natural language processing; and robotics and computer vision.
This book reports on new theories and applications in the field of intelligent systems and computing. It covers computational and artificial intelligence methods, as well as advances in computer vision, current issues in big data and cloud computing, computation linguistics, and cyber-physical systems. It also reports on data mining and knowledge extraction technologies, as well as central issues in intelligent information management. Written by active researchers, the respective chapters are based on papers presented at the International Conference on Computer Science and Information Technologies (CSIT 2018), held on September 11-14, 2018, in Lviv, Ukraine, and jointly organized by the Lviv Polytechnic National University, Ukraine, the Kharkiv National University of Radio Electronics, Ukraine, and the Technical University of Lodz, Poland, under patronage of Ministry of Education and Science of Ukraine. Given its breadth of coverage, the book provides academics and professionals with extensive information and a timely snapshot of the field of intelligent systems, and is sure to foster new discussions and collaborations among different groups.
The seven-volume set of LNCS 11301-11307, constitutes the proceedings of the 25th International Conference on Neural Information Processing, ICONIP 2018, held in Siem Reap, Cambodia, in December 2018. The 401 full papers presented were carefully reviewed and selected from 575 submissions. The papers address the emerging topics of theoretical research, empirical studies, and applications of neural information processing techniques across different domains. The first volume, LNCS 11301, is organized in topical sections on deep neural networks, convolutional neural networks, recurrent neural networks, and spiking neural networks.
The book includes high-quality research papers presented at the International Conference on Innovative Computing and Communication (ICICC 2018), which was held at the Guru Nanak Institute of Management (GNIM), Delhi, India on 5-6 May 2018. Introducing the innovative works of scientists, professors, research scholars, students and industrial experts in the field of computing and communication, the book promotes the transformation of fundamental research into institutional and industrialized research and the conversion of applied exploration into real-time applications.
This book constitutes the refereed post-conference proceedings of the 8th International Conference on Big Data Technologies and Applications, BDTA 2017, held in Gwangju, South Korea, in November 2017. The 15 revised full papers were carefully reviewed and selected from 25 submissions and handle theoretical foundations and practical applications which premise the new generation of data analytics and engineering. The contributions deal with following topics: privacy and security, image processing, context awareness, s/w engineering and e-commerce, social media and health care.
This book presents new theories and working models in the area of data analytics and learning. The papers included in this volume were presented at the first International Conference on Data Analytics and Learning (DAL 2018), which was hosted by the Department of Studies in Computer Science, University of Mysore, India on 30-31 March 2018. The areas covered include pattern recognition, image processing, deep learning, computer vision, data analytics, machine learning, artificial intelligence, and intelligent systems. As such, the book offers a valuable resource for researchers and practitioners alike.
Utilizing the ubiquity of social media in modern society, the emerging interdisciplinary field of social computing offers the promise of important human-centered applications. "Human-Centered Social Media Analytics" provides a timely and unique survey of next-generation social computational methodologies. The text explains the fundamentals of this field, and describes state-of-the-art methods for inferring social status, relationships, preferences, intentions, personalities, needs, and lifestyles from human information in unconstrained visual data. The collected chapters present a range of different viewpoints examining the various possibilities and challenges to machine understanding of humans in a social context. Topics and features: includes perspectives from an international and interdisciplinary selection of pre-eminent authorities; presents balanced coverage of both detailed theoretical analysis and real-world applications; examines social relationships in human-centered media for the development of socially-aware video, location-based, and multimedia applications; reviews techniques for recognizing the social roles played by people in an event, and for classifying human-object interaction activities; discusses the prediction and recognition of human attributes via social media analytics, including social relationships, facial age and beauty, and occupation; requires no prior background knowledge of the area. This authoritative text/reference will be a valuable resource for researchers and graduate students interested in social media and networking, computer vision and biometrics, big data, and HCI. Practitioners in these fields, as well as in image processing and computer graphics, will also find the book of great interest.
This book presents state-of-the-art solutions to the theoretical and practical challenges stemming from the leverage of big data and its computational intelligence in supporting smart network operation, management, and optimization. In particular, the technical focus covers the comprehensive understanding of network big data, efficient collection and management of network big data, distributed and scalable online analytics for network big data, and emerging applications of network big data for computational intelligence.
The two-volume set LNBIP 353 and 354 constitutes the proceedings of the 22nd International Conference on Business Information Systems, BIS 2019, held in Seville, Spain, in June 2019. The theme of the BIS 2019 was "Data Science for Business Information Systems", inspiring researchers to share theoretical and practical knowledge of the different aspects related to Data Science in enterprises. The 67 papers presented in these proceedings were carefully reviewed and selected from 223 submissions. The contributions were organized in topical sections as follows: Part I: Big Data and Data Science; Artificial Intelligence; ICT Project Management; and Smart Infrastructure. Part II: Social Media and Web-based Systems; and Applications, Evaluations and Experiences.
The development of information technology has made it possible to collect large amounts of spatial data on a daily basis. It is of enormous significance when it comes to discovering implicit, non-trivial and potentially valuable information from this spatial data. Spatial co-location patterns reveal the distribution rules of spatial features, which can be valuable for application users. This book provides commercial software developers with proven and effective algorithms for detecting and filtering these implicit patterns, and includes easily implemented pseudocode for all the algorithms. Furthermore, it offers a basis for further research in this promising field. Preference-based co-location pattern mining refers to mining constrained or condensed co-location patterns instead of mining all prevalent co-location patterns. Based on the authors' recent research, the book highlights techniques for solving a range of problems in this context, including maximal co-location pattern mining, closed co-location pattern mining, top-k co-location pattern mining, non-redundant co-location pattern mining, dominant co-location pattern mining, high utility co-location pattern mining, user-preferred co-location pattern mining, and similarity measures between spatial co-location patterns. Presenting a systematic, mathematical study of preference-based spatial co-location pattern mining, this book can be used both as a textbook for those new to the topic and as a reference resource for experienced professionals.
This double volumes LNCS 11229-11230 constitutes the refereed proceedings of the Confederated International Conferences: Cooperative Information Systems, CoopIS 2018, Ontologies, Databases, and Applications of Semantics, ODBASE 2018, and Cloud and Trusted Computing, C&TC, held as part of OTM 2018 in October 2018 in Valletta, Malta. The 64 full papers presented together with 22 short papers were carefully reviewed and selected from 173 submissions. The OTM program every year covers data and Web semantics, distributed objects, Web services, databases, informationsystems, enterprise workflow and collaboration, ubiquity, interoperability, mobility, grid and high-performance computing.
This SpringerBrief provides an overview within data mining of spatiotemporal frequent pattern mining from evolving regions to the perspective of relationship modeling among the spatiotemporal objects, frequent pattern mining algorithms, and data access methodologies for mining algorithms. While the focus of this book is to provide readers insight into the mining algorithms from evolving regions, the authors also discuss data management for spatiotemporal trajectories, which has become increasingly important with the increasing volume of trajectories. This brief describes state-of-the-art knowledge discovery techniques to computer science graduate students who are interested in spatiotemporal data mining, as well as researchers/professionals, who deal with advanced spatiotemporal data analysis in their fields. These fields include GIS-experts, meteorologists, epidemiologists, neurologists, and solar physicists.
This book constitutes the thoroughly refereed post-conference proceedings of the Third International Conference on Advances in Data Science, ICIIT 2018, held in Chennai, India, in December 2018. The 11 full papers along with 4 short papers presented were carefully reviewed and selected from 74 submissions.The papers are organized in topical sections on data science foundations, data management and processing technologies, data analytics and its applications.
This SpringerBrief covers the technical material related to large scale hierarchical classification (LSHC). HC is an important machine learning problem that has been researched and explored extensively in the past few years. In this book, the authors provide a comprehensive overview of various state-of-the-art existing methods and algorithms that were developed to solve the HC problem in large scale domains. Several challenges faced by LSHC is discussed in detail such as: 1. High imbalance between classes at different levels of the hierarchy 2. Incorporating relationships during model learning leads to optimization issues 3. Feature selection 4. Scalability due to large number of examples, features and classes 5. Hierarchical inconsistencies 6. Error propagation due to multiple decisions involved in making predictions for top-down methods The brief also demonstrates how multiple hierarchies can be leveraged for improving the HC performance using different Multi-Task Learning (MTL) frameworks. The purpose of this book is two-fold: 1. Help novice researchers/beginners to get up to speed by providing a comprehensive overview of several existing techniques. 2. Provide several research directions that have not yet been explored extensively to advance the research boundaries in HC. New approaches discussed in this book include detailed information corresponding to the hierarchical inconsistencies, multi-task learning and feature selection for HC. Its results are highly competitive with the state-of-the-art approaches in the literature.
This book constitutes the thoroughly refereed post conference proceedings of the 4th edition of the Semantic Web Evaluation Challenge, SemWebEval 2018, co-located with the 15th European Semantic Web conference, held in Heraklion, Greece, in June 2018. This book includes the descriptions of all methods and tools that competed at SemWebEval 2018, together with a detailed description of the tasks, evaluation procedures and datasets. The 18 revised full papers presented in this volume were carefully reviewed and selected from 24 submissions. The contributions are grouped in the areas: the mighty storage challenge; open knowledge extraction challenge; question answering over linked data challenge; semantic sentiment analysis.
This book constitutes the proceedings of the 21st International Conference on Discovery Science, DS 2018, held in Limassol, Cyprus, in October 2018, co-located with the International Symposium on Methodologies for Intelligent Systems, ISMIS 2018. The 30 full papers presented together with 5 abstracts of invited talks in this volume were carefully reviewed and selected from 71 submissions. The scope of the conference includes the development and analysis of methods for discovering scientific knowledge, coming from machine learning, data mining, intelligent data analysis, big data analysis as well as their application in various scientific domains. The papers are organized in the following topical sections: Classification; meta-learning; reinforcement learning; streams and time series; subgroup and subgraph discovery; text mining; and applications.
This book constitutes the refereed proceedings of the 9th International Conference on Applications and Techniques in Information Security, ATIS 2018, held in Nanning, China, in November 2018. The 19 full papers were carefully reviewed and selected from 59 submissions. The papers are organized in the following topical sections: information security, information abuse prevention, security implementations, knowledge discovery, and applications.
The seven-volume set of LNCS 11301-11307, constitutes the proceedings of the 25th International Conference on Neural Information Processing, ICONIP 2018, held in Siem Reap, Cambodia, in December 2018. The 401 full papers presented were carefully reviewed and selected from 575 submissions. The papers address the emerging topics of theoretical research, empirical studies, and applications of neural information processing techniques across different domains. The 4th volume, LNCS 11304, is organized in topical sections on feature selection, clustering, classification, and detection.
This volume constitutes the proceedings of the 6th CCF Conference, Big Data 2018, held in Xi'an, China, in October 2018. The 32 revised full papers presented in this volume were carefully reviewed and selected from 880 submissions. The papers are organized in topical sections on natural language processing and text mining; big data analytics and smart computing; big data applications; the application of big data in machine learning; social networks and recommendation systems; parallel computing and storage of big data; data quality control and data governance; big data system and management.
The two-volume set LNCS 10761 + 10762 constitutes revised selected papers from the CICLing 2017 conference which took place in Budapest, Hungary, in April 2017. The total of 90 papers presented in the two volumes was carefully reviewed and selected from numerous submissions. In addition, the proceedings contain 4 invited papers. The papers are organized in the following topical sections: Part I: general; morphology and text segmentation; syntax and parsing; word sense disambiguation; reference and coreference resolution; named entity recognition; semantics and text similarity; information extraction; speech recognition; applications to linguistics and the humanities. Part II: sentiment analysis; opinion mining; author profiling and authorship attribution; social network analysis; machine translation; text summarization; information retrieval and text classification; practical applications.
This book constitutes the revised selected papers from the 6th ECML PKDD Workshop on Data Analytics for Renewable Energy Integration, DARE 2018, held in Dublin, Ireland, in September 2018. The 9 papers presented in this volume were carefully reviewed and selected for inclusion in this book and handle topics such as time series forecasting, the detection of faults, cyber security, smart grid and smart cities, technology integration, demand response, and many others.
Multimedia searching and management have become popular due to demanding applications and competition among companies. Despite the increase in interest, there is no existing book covering basic knowledge on state-of-the-art techniques within the field. ""Semantic Mining Technologies for Multimedia Databases"" provides an introduction to the most recent techniques in multimedia semantic mining necessary to researchers new to the field. This book serves as an important reference in multimedia for academicians, multimedia technologists and researchers, and academic libraries.
The book includes selected high-quality research papers presented at the Third International Congress on Information and Communication Technology held at Brunel University, London on February 27-28, 2018. It discusses emerging topics pertaining to information and communication technology (ICT) for managerial applications, e-governance, e-agriculture, e-education and computing technologies, the Internet of Things (IOT), and e-mining. Written by experts and researchers working on ICT, the book is suitable for new researchers involved in advanced studies.
The seven-volume set of LNCS 11301-11307 constitutes the proceedings of the 25th International Conference on Neural Information Processing, ICONIP 2018, held in Siem Reap, Cambodia, in December 2018. The 401 full papers presented were carefully reviewed and selected from 575 submissions. The papers address the emerging topics of theoretical research, empirical studies, and applications of neural information processing techniques across different domains. The 6th volume, LNCS 11306, is organized in topical sections on time-series analysis; social systems; and image and signal processing.
The seven-volume set of LNCS 11301-11307 constitutes the proceedings of the 25th International Conference on Neural Information Processing, ICONIP 2018, held in Siem Reap, Cambodia, in December 2018. The 401 full papers presented were carefully reviewed and selected from 575 submissions. The papers address the emerging topics of theoretical research, empirical studies, and applications of neural information processing techniques across different domains. The 5th volume, LNCS 11305, is organized in topical sections on prediction; pattern recognition; and word, text and document processing. |
You may like...
Opinion Mining and Text Analytics on…
Pantea Keikhosrokiani, Moussa Pourya Asl
Hardcover
R9,276
Discovery Miles 92 760
The Data and Analytics Playbook - Proven…
Lowell Fryman, Gregory Lampshire, …
Paperback
R1,200
Discovery Miles 12 000
New Opportunities for Sentiment Analysis…
Aakanksha Sharaff, G. R. Sinha, …
Hardcover
R6,648
Discovery Miles 66 480
|