![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > Applications of computing > Databases > Data mining
The two-volume set LNAI 10841 and LNAI 10842 constitutes the refereed proceedings of the 17th International Conference on Artificial Intelligence and Soft Computing, ICAISC 2018, held in Zakopane, Poland in June 2018. The 140 revised full papers presented were carefully reviewed and selected from 242 submissions. The papers included in the first volume are organized in the following three parts: neural networks and their applications; evolutionary algorithms and their applications; and pattern classification.
This book constitutes the proceedings of the 24th International Symposium on Foundations of Intelligent Systems, ISMIS 2018, held in Limassol, Cyprus, in October 2018. The 32 full, 8 short, and 4 application papers presented in this volume were carefully reviewed and selected from 59 submissions. The papers deal with topics such as bioinformatics and health informatics, graph mining, image analysis, intelligent systems, mining complex patterns, novelty detection and class imbalance, social data analysis, spatio-temporal analysis, and topic modeling and opinion mining. In addition, three special sessions were organized, namely: Special Session on Granular and Soft Clustering for Data Science, Special Session on Intelligent Methodologies for Traffic Data Analysis and Mining, and Special Session on Advanced Methods in Machine Learning for Modeling Complex Data.
This two-volume set LNCS 10954 and LNCS 10955 constitutes - in conjunction with the volume LNAI 10956 - the refereed proceedings of the 14th International Conference on Intelligent Computing, ICIC 2018, held in Wuhan, China, in August 2018. The 275 full papers and 72 short papers of the three proceedings volumes were carefully reviewed and selected from 632 submissions. The papers are organized in topical sections such as Neural Networks.- Pattern Recognition.- Image Processing.- Intelligent Computing in Robotics.- Intelligent Control and Automation.- Intelligent Data Analysis and Prediction.- Fuzzy Theory and Algorithms.- Supervised Learning.- Unsupervised Learning.- Kernel Methods and Supporting Vector Machines.- Knowledge Discovery and Data Mining.- Natural Language Processing and Computational Linguistics.- Gene Expression Array Analysis.- Systems Biology.- Computational Genomics.- Computational Proteomics.- Gene Regulation Modeling and Analysis.- Protein-Protein Interaction Prediction.- Next-Gen Sequencing and Metagenomics.- Structure Prediction and Folding.- Evolutionary Optimization for Scheduling.- High-Throughput Biomedical Data Integration and Mining.- Machine Learning Algorithms and Applications.- Heuristic Optimization Algorithms for Real-World Applications.- Evolutionary Multi-Objective Optimization and Its Applications.- Swarm Evolutionary Algorithms for Scheduling and Combinatorial.- Optimization.- Swarm Intelligence and Applications in Combinatorial Optimization.- Advances in Metaheuristic Optimization Algorithm.- Advances in Image Processing and Pattern Recognition Techniques.- AI in Biomedicine.- Bioinformatics.- Biometrics Recognition.- Information Security.- Virtual Reality and Human-Computer Interaction.- Healthcare Informatics Theory and Methods.- Intelligent Computing in Computer Vision.- Intelligent Agent and Web Applications.- Reinforcement Learning.- Machine Learning.- Modeling, Simulation, and Optimization of Biological Systems.- Biomedical Data Modeling and Mining.- Cheminformatics.- Intelligent Computing in Computational Biology.- Protein Structure and Function Prediction.- Biomarker Discovery.- Hybrid Computational Intelligence: Theory and Application in Bioinformatics, Computational Biology and Systems Biology.- IoT and Smart Data.- Intelligent Systems and Applications for Bioengineering.- Evolutionary Optimization: Foundations and Its Applications to Intelligent Data Analytics.- Protein and Gene Bioinformatics: Analysis, Algorithms and Applications.
This two-volume set LNAI 10934 and LNAI 10935 constitutes the refereed proceedings of the 14th International Conference on Machine Learning and Data Mining in Pattern Recognition, MLDM 2018, held in New York, NY, USA in July 2018. The 92 regular papers presented in this two-volume set were carefully reviewed and selected from 298 submissions. The topics range from theoretical topics for classification, clustering, association rule and pattern mining to specific data mining methods for the different multi-media data types such as image mining, text mining, video mining, and Web mining.
The book gathers a collection of high-quality peer-reviewed research papers presented at the International Conference on Data and Information Systems (ICDIS 2017), held at Indira Gandhi National Tribal University, India from November 3 to 4, 2017. The book covers all aspects of computational sciences and information security. In chapters written by leading researchers, developers and practitioner from academia and industry, it highlights the latest developments and technical solutions, helping readers from the computer industry capitalize on key advances in next-generation computer and communication technology.
This book constitutes the proceedings of the 6th International Conference on Analysis of Images, Social Networks and Texts, AIST 2017, held in Moscow, Russia, in July 2017. The 29 full papers and 8 short papers were carefully reviewed and selected from 127 submissions. The papers are organized in topical sections on natural language processing; general topics of data analysis; analysis of images and video; optimization problems on graphs and network structures; analysis of dynamic behavior through event data; social network analysis.
This brief presents readers with a summary of classic, modern, and state-of-the-art methods for discovering the roles of entities in networks (including social networks) that range from small to large-scale. It classifies methods by their mathematical underpinning, whether they are driven by implications about entity behaviors in system, or if they are purely data driven. The brief also discusses when and how each method should be applied, and discusses some outstanding challenges toward the development of future role mining methods of each type.
This book presents the proceedings of the 6th International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA-2017), held in Bhubaneswar, Odisha. The event brought together researchers, scientists, engineers, and practitioners to exchange their new ideas and experiences in the domain of intelligent computing theories with prospective applications to various engineering disciplines. The book is divided into two volumes: Information and Decision Sciences, and Intelligent Engineering Informatics. This volume covers broad areas of Information and Decision Sciences, with papers exploring both the theoretical and practical aspects of data-intensive computing, data mining, evolutionary computation, knowledge management & networks, sensor networks, signal processing, wireless networks, protocols & architectures etc. The book also offers a valuable resource for students at the post-graduate level in various engineering disciplines.
The two volume proceedings of CCIS 698 and 699 constitutes revised selected papers from the 4th International Conference on Geo-Informatics in Resource Management and Sustainable Ecosystem, GRMSE 2016, held in Hong Kong, China, in November 2016. The total of 118 papers presented in these proceedings were carefully reviewed and selected from 311 submissions. The contributions were organized in topical sections named: smart city in resource management and sustainable ecosystem; spatial data acquisition through RS and GIS in resource management and sustainable ecosystem; ecological and environmental data processing and management; advanced geospatial model and analysis for understanding ecological and environmental processes; applications of geo-informatics in resource management and sustainable ecosystem.
The two volume proceedings of CCIS 698 and 699 constitutes revised selected papers from the 4th International Conference on Geo-Informatics in Resource Management and Sustainable Ecosystem, GRMSE 2016, held in Hong Kong, China, in November 2016. The total of 118 papers presented in these proceedings were carefully reviewed and selected from 311 submissions. The contributions were organized in topical sections named: smart city in resource management and sustainable ecosystem; spatial data acquisition through RS and GIS in resource management and sustainable ecosystem; ecological and environmental data processing and management; advanced geospatial model and analysis for understanding ecological and environmental processes; applications of geo-informatics in resource management and sustainable ecosystem.
This book constitutes the refereed proceedings of the 13th International Conference on Pattern Recognition and Information Processing, PRIP 2016, held in Minsk, Belarus, in October 2016. The 18 revised full papers presented were carefully reviewed and selected from 72 submissions. The papers are organized in topical sections on summarizing lectures; pattern recognition and image analysis; information processing and applications.
The three volume set provides a systematic overview of theories and technique on social network analysis. Volume 3 of the set mainly focuses on the propagation models and evolution rules of information. Information retrieval and dissemination, topic discovery and evolution, algorithms of influence maximization are discussed in detail. It is an essential reference for scientist and professionals in computer science.
Learn to use Apache Pig to develop lightweight big data applications easily and quickly. This book shows you many optimization techniques and covers every context where Pig is used in big data analytics. Beginning Apache Pig shows you how Pig is easy to learn and requires relatively little time to develop big data applications.The book is divided into four parts: the complete features of Apache Pig; integration with other tools; how to solve complex business problems; and optimization of tools.You'll discover topics such as MapReduce and why it cannot meet every business need; the features of Pig Latin such as data types for each load, store, joins, groups, and ordering; how Pig workflows can be created; submitting Pig jobs using Hue; and working with Oozie. You'll also see how to extend the framework by writing UDFs and custom load, store, and filter functions. Finally you'll cover different optimization techniques such as gathering statistics about a Pig script, joining strategies, parallelism, and the role of data formats in good performance. What You Will Learn* Use all the features of Apache Pig* Integrate Apache Pig with other tools* Extend Apache Pig* Optimize Pig Latin code* Solve different use cases for Pig LatinWho This Book Is ForAll levels of IT professionals: architects, big data enthusiasts, engineers, developers, and big data administrators
This book constitutes the refereed proceedings of the 15th Australasian Conference on Data Mining, AusDM 2017, held in Melbourne, VIC, Australia, in August 2017. The 17 revised full papers presented together with 11 research track papers and 6 application track papers were carefully reviewed and selected from 31 submissions. The papers are organized in topical sections on clustering and classification; big data; time series; outlier detection and applications; social media and applications.
This volume deals with two complementary topics. On one hand the book deals with the problem of determining the the probability distribution of a positive compound random variable, a problem which appears in the banking and insurance industries, in many areas of operational research and in reliability problems in the engineering sciences. On the other hand, the methodology proposed to solve such problems, which is based on an application of the maximum entropy method to invert the Laplace transform of the distributions, can be applied to many other problems. The book contains applications to a large variety of problems, including the problem of dependence of the sample data used to estimate empirically the Laplace transform of the random variable. Contents Introduction Frequency models Individual severity models Some detailed examples Some traditional approaches to the aggregation problem Laplace transforms and fractional moment problems The standard maximum entropy method Extensions of the method of maximum entropy Superresolution in maxentropic Laplace transform inversion Sample data dependence Disentangling frequencies and decompounding losses Computations using the maxentropic density Review of statistical procedures
The volume contains latest research work presented at International Conference on Computing and Communication Systems (I3CS 2016) held at North Eastern Hill University (NEHU), Shillong, India. The book presents original research results, new ideas and practical development experiences which concentrate on both theory and practices. It includes papers from all areas of information technology, computer science, electronics and communication engineering written by researchers, scientists, engineers and scholar students and experts from India and abroad.
This book provides a comprehensive introduction and practical look at the concepts and techniques readers need to get the most out of their data in real-world, large-scale data mining projects. It also guides readers through the data-analytic thinking necessary for extracting useful knowledge and business value from the data. The book is based on the Soft Computing and Data Mining (SCDM-16) conference, which was held in Bandung, Indonesia on August 18th-20th 2016 to discuss the state of the art in soft computing techniques, and offer participants sufficient knowledge to tackle a wide range of complex systems. The scope of the conference is reflected in the book, which presents a balance of soft computing techniques and data mining approaches. The two constituents are introduced to the reader systematically and brought together using different combinations of applications and practices. It offers engineers, data analysts, practitioners, scientists and managers the insights into the concepts, tools and techniques employed, and as such enables them to better understand the design choice and options of soft computing techniques and data mining approaches that are necessary to thrive in this data-driven ecosystem.
This book offers a systematic overview of the concepts and practical techniques that readers need to get the most out of their large-scale data mining projects and research studies. It guides them through the data-analytical thinking essential to extract useful information and obtain commercial value from the data. Presenting the outcomes of International Conference on Soft Computing and Data Mining (SCDM-2017), held in Johor, Malaysia on February 6-8, 2018, it provides a well-balanced integration of soft computing and data mining techniques. The two constituents are brought together in various combinations of applications and practices. To thrive in these data-driven ecosystems, researchers, engineers, data analysts, practitioners, and managers must understand the design choice and options of soft computing and data mining techniques, and as such this book is a valuable resource, helping readers solve complex benchmark problems and better appreciate the concepts, tools, and techniques employed.
This book presents two collaborative prediction approaches based on contextual representation and hierarchical representation, and their applications including context-aware recommendation, latent collaborative retrieval and click-through rate prediction. The proposed techniques offer significant improvements over current methods, the key determinants being the incorporated contextual representation and hierarchical representation. To provide a background to the core ideas presented, it offers an overview of contextual modeling and the theory of contextual representation and hierarchical representation, which are constructed for the joint interaction of entities and contextual information. The book offers a rich blend of theory and practice, making it a valuable resource for students, researchers and practitioners who need to construct systems of information retrieval, data mining and recommendation systems with contextual information.
This book constitutes the refereed proceedings of the 20th International Conference on Business Information Systems, BIS 2017, held in Poznan, Poland, in June 2017. Big Data Analytics helps to understand and enhance enterprises by linking many fields of information technology and business. This year's conference theme was: Big Data Analytics for Business and Public Administration. The 24 full papers presented in this volume were carefully reviewed and selected from 72 submissions. They were organized in topical sections named: big and smart data; business and enterprise modeling; ICT project management; process management; smart infrastructure; and applications.
The volume deals with sustainability transitions which are transformations of major socio-technical systems of provision and use in areas such as energy, water, mobility, and food, towards more sustainable ways of production and consumption. The book provides insights of World Conference on Smart Trends in Systems, Security and Sustainability (WS4 2017) which is divided into different sections such as Smart IT Infrastructure for Sustainable Society; Smart Management prospective for Sustainable Society; Smart Secure Systems for Next Generation Technologies; Smart Trends for Computational Graphics and Image Modelling; and Smart Trends for Biomedical and Health Informatics. The book volume contains 31 high-quality papers presented at WS4 2017.
The two-volume set CCIS 662 and CCIS 663 constitutes the refereed proceedings of the 7th Chinese Conference on Pattern Recognition, CCPR 2016, held in Chengdu, China, in November 2016.The 121 revised papers presented in two volumes were carefully reviewed and selected from 199 submissions. The papers are organized in topical sections on robotics; computer vision; basic theory of pattern recognition; image and video processing; speech and language; emotion recognition.
This book constitutes the refereed proceedings of the 11th International Conference, NooJ 2017, held in Kenitra and Rabat, Morocco, in May 2017. The 20 revised full papers presented in this volume were carefully reviewed and selected from 56 submissions. NooJ is a linguistic development environment that provides tools for linguists to construct linguistic resources that formalize a large gamut of linguistic phenomena: typography, orthography, lexicons for simple words, multiword units and discontinuous expressions, inflectional and derivational morphology, local, structural and transformational syntax, and semantics. The papers in this volume are organized in topical sections on vocabulary and morphology; syntactic analysis; natural language processing applications; NooJ's future.
Written by renowned data science experts Foster Provost and Tom Fawcett, Data Science for Business introduces the fundamental principles of data science, and walks you through the "data-analytic thinking" necessary for extracting useful knowledge and business value from the data you collect. This guide also helps you understand the many data-mining techniques in use today. Based on an MBA course Provost has taught at New York University over the past ten years, Data Science for Business provides examples of real-world business problems to illustrate these principles. You'll not only learn how to improve communication between business stakeholders and data scientists, but also how participate intelligently in your company's data science projects. You'll also discover how to think data-analytically, and fully appreciate how data science methods can support business decision-making. Understand how data science fits in your organization - and how you can use it for competitive advantage Treat data as a business asset that requires careful investment if you're to gain real value Approach business problems data-analytically, using the data-mining process to gather good data in the most appropriate way Learn general concepts for actually extracting knowledge from data Apply data science principles when interviewing data science job candidates
This collection of contributed chapters demonstrates a wide range of applications within two overlapping research domains: social media analysis and social network analysis. Various methodologies were utilized in the twelve individual chapters including static, dynamic and real-time approaches to graph, textual and multimedia data analysis. The topics apply to reputation computation, emotion detection, topic evolution, rumor propagation, evaluation of textual opinions, friend ranking, analysis of public transportation networks, diffusion in dynamic networks, analysis of contributors to communities of open source software developers, biometric template generation as well as analysis of user behavior within heterogeneous environments of cultural educational centers. Addressing these challenging applications is what makes this edited volume of interest to researchers and students focused on social media and social network analysis. |
You may like...
Opinion Mining and Text Analytics on…
Pantea Keikhosrokiani, Moussa Pourya Asl
Hardcover
R9,276
Discovery Miles 92 760
Transforming Businesses With Bitcoin…
Dharmendra Singh Rajput, Ramjeevan Singh Thakur, …
Hardcover
R5,938
Discovery Miles 59 380
Big Data and Smart Service Systems
Xiwei Liu, Rangachari Anand, …
Hardcover
Handbook of Research on Automated…
Mrutyunjaya Panda, Harekrishna Misra
Hardcover
R7,766
Discovery Miles 77 660
|