![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > Applications of computing > Databases > Data mining
Life scientists today urgently need training in bioinformatics skills. Too many bioinformatics programs are poorly written and barely maintained--usually by students and researchers who've never learned basic programming skills. This practical guide shows postdoc bioinformatics professionals and students how to exploit the best parts of Python to solve problems in biology while creating documented, tested, reproducible software. Ken Youens-Clark, author of Tiny Python Projects (Manning), demonstrates not only how to write effective Python code but also how to use tests to write and refactor scientific programs. You'll learn the latest Python features and tools - including linters, formatters, type checkers, and tests - to create documented and tested programs. You'll also tackle 14 challenges in Rosalind, a problem-solving platform for learning bioinformatics and programming. Create command-line Python programs to document and validate parameters Write tests to verify refactor programs and confirm they're correct Address bioinformatics ideas using Python data structures and modules such as Biopython Create reproducible shortcuts and workflows using makefiles Parse essential bioinformatics file formats such as FASTA and FASTQ Find patterns of text using regular expressions Use higher-order functions in Python like filter(), map(), and reduce()
The work presents new approaches to Machine Learning for Cyber Physical Systems, experiences and visions. It contains some selected papers from the international Conference ML4CPS - Machine Learning for Cyber Physical Systems, which was held in Lemgo, October 25th-26th, 2017. Cyber Physical Systems are characterized by their ability to adapt and to learn: They analyze their environment and, based on observations, they learn patterns, correlations and predictive models. Typical applications are condition monitoring, predictive maintenance, image processing and diagnosis. Machine Learning is the key technology for these developments.
The International Conference on "Computational Intelligence in Data Mining" (ICCIDM), after three successful versions, has reached to its fourth version with a lot of aspiration. The best selected conference papers are reviewed and compiled to form this volume. The proceedings discusses the latest solutions, scientific results and methods in solving intriguing problems in the fields of data mining, computational intelligence, big data analytics, and soft computing. The volume presents a sneak preview into the strengths and weakness of trending applications and research findings in the field of computational intelligence and data mining along with related field.
This book of peer-reviewed contributions presents the latest findings in classification, statistical learning, data analysis and related areas, including supervised and unsupervised classification, clustering, statistical analysis of mixed-type data, big data analysis, statistical modeling, graphical models and social networks. It covers both methodological aspects as well as applications to a wide range of fields such as economics, architecture, medicine, data management, consumer behavior and the gender gap. In addition, it describes the basic features of the software behind the data analysis results, and provides links to the corresponding codes and data sets where necessary. This book is intended for researchers and practitioners who are interested in the latest developments and applications in the field of data analysis and classification. It gathers selected and peer-reviewed contributions presented at the 11th Scientific Meeting of the Classification and Data Analysis Group of the Italian Statistical Society (CLADAG 2017), held in Milan, Italy, on September 13-15, 2017.
The book includes research papers on current developments in the field of soft computing and signal processing, selected from papers presented at the International Conference on Soft Computing and Signal Processing (ICSCSP 2018). It features papers on current topics, such as soft sets, rough sets, fuzzy logic, neural networks, genetic algorithms and machine learning. It also discusses various aspects of these topics, like technologies, product implementation, and application issues.
This book constitutes the refereed proceedings of the 24th International Conference on Applications of Natural Language to Information Systems, NLDB 2019, held in Salford, UK, in June 2019. The 21 full papers and 16 short papers were carefully reviewed and selected from 75 submissions. The papers are organized in the following topical sections: argumentation mining and applications; deep learning, neural languages and NLP; social media and web analytics; question answering; corpus analysis; semantic web, open linked data, and ontologies; natural language in conceptual modeling; natural language and ubiquitous computing; and big data and business intelligence.
The book gathers a collection of high-quality peer-reviewed research papers presented at the International Conference on Data and Information Systems (ICDIS 2017), held at Indira Gandhi National Tribal University, India from November 3 to 4, 2017. The book covers all aspects of computational sciences and information security. In chapters written by leading researchers, developers and practitioner from academia and industry, it highlights the latest developments and technical solutions, helping readers from the computer industry capitalize on key advances in next-generation computer and communication technology.
This proceeding discuss the latest solutions, scientific findings and methods for solving intriguing problems in the fields of data mining, computational intelligence, big data analytics, and soft computing. This gathers outstanding papers from the fifth International Conference on "Computational Intelligence in Data Mining" (ICCIDM), and offer a "sneak preview" of the strengths and weaknesses of trending applications, together with exciting advances in computational intelligence, data mining, and related fields.
The seven-volume set of LNCS 11301-11307, constitutes the proceedings of the 25th International Conference on Neural Information Processing, ICONIP 2018, held in Siem Reap, Cambodia, in December 2018. The 401 full papers presented were carefully reviewed and selected from 575 submissions. The papers address the emerging topics of theoretical research, empirical studies, and applications of neural information processing techniques across different domains. The third volume, LNCS 11303, is organized in topical sections on embedded learning, transfer learning, reinforcement learning, and other learning approaches.
The two-volume set LNAI 11288 and 11289 constitutes the proceedings of the 17th Mexican International Conference on Artificial Intelligence, MICAI 2018, held in Guadalajara, Mexico, in October 2018. The total of 62 papers presented in these two volumes was carefully reviewed and selected from 149 submissions. The contributions are organized in topical as follows: Part I: evolutionary and nature-inspired intelligence; machine learning; fuzzy logic and uncertainty management. Part II: knowledge representation, reasoning, and optimization; natural language processing; and robotics and computer vision.
Advances in Digital Forensics VI describes original research results and innovative applications in the discipline of digital forensics. In addition, it highlights some of the major technical and legal issues related to digital evidence and electronic crime investigations. The areas of coverage include: Themes and Issues, Forensic Techniques, Internet Crime Investigations, Live Forensics, Advanced Forensic Techniques, and Forensic Tools. This book is the sixth volume in the annual series produced by the International Federation for Information Processing (IFIP) Working Group 11.9 on Digital Forensics, an international community of scientists, engineers and practitioners dedicated to advancing the state of the art of research and practice in digital forensics. The book contains a selection of twenty-one edited papers from the Sixth Annual IFIP WG 11.9 International Conference on Digital Forensics, held at the University of Hong Kong, Hong Kong, China, in January 2010.
To tackle the challenges of the road estimation task, many works employ a fusion of multiple sources. By that, a commonly made assumption is that the sources always are equally reliable. However, this assumption is inappropriate since each source has certain advantages and drawbacks depending on the operational scenarios. Therefore, Tuan Tran Nguyen proposes a novel concept by incorporating reliabilities into the multi-source fusion so that the road estimation task can alternately select only the most reliable sources. Thereby, the author estimates the reliability for each source online using classifiers trained with the sensor measurements, the past performance and the context. Using real data recordings, he shows via experimental results that the presented reliability-aware fusion increases the availability of automated driving up to 7 percentage points compared to the average fusion.About the Author: Tuan Tran Nguyen received the Master's degree in computer science and the Ph.D. degree from Otto-von-Guericke University Magdeburg, Germany, in 2013 and 2019, respectively. His research focuses on methods and architectures for reliability-based sensor fusion in intelligent vehicles.
This book presents original research on analytics and context awareness with regard to providing sophisticated learning services for all stakeholders in the eLearning context. It offers essential information on the definition, modeling, development and deployment of services for these stakeholders. Data analysis has long-since been a cornerstone of eLearning, supplying learners, teachers, researchers, managers and policymakers with valuable information on learning activities and design. With the rapid development of Internet technologies and sophisticated online learning environments, increasing volumes and varieties of data are being generated, and data analysis has moved on to more complex analysis techniques, such as educational data mining and learning analytics. Now powered by cloud technologies, online learning environments are capable of gathering and storing massive amounts of data in various formats, of tracking user-system and user-user interactions, and of delivering rich contextual information.
This two-volume set LNCS 11625 and 11626 constitutes the refereed proceedings of the 20th International Conference on Artificial Intelligence in Education, AIED 2019, held in Chicago, IL, USA, in June 2019. The 45 full papers presented together with 41 short, 10 doctoral consortium, 6 industry, and 10 workshop papers were carefully reviewed and selected from 177 submissions. AIED 2019 solicits empirical and theoretical papers particularly in the following lines of research and application: Intelligent and interactive technologies in an educational context; Modelling and representation; Models of teaching and learning; Learning contexts and informal learning; Evaluation; Innovative applications; Intelligent techniques to support disadvantaged schools and students, inequity and inequality in education.
This book presents high-quality original contributions on the development of automatic traffic analysis systems that are able to not only anticipate traffic scenarios, but also understand the behavior of road users (vehicles, bikes, trucks, etc.) in order to provide better traffic management, prevent accidents and, potentially, identify criminal behaviors. Topics also include traffic surveillance and vehicle accident analysis using formal concept analysis, convolutional and recurrent neural networks, unsupervised learning and process mining. The content is based on papers presented at the 1st Italian Conference for the Traffic Police (TRAP), which was held in Rome in October 2017. This conference represents a targeted response to the challenges facing the police in connection with managing massive traffic data, finding patterns from historical datasets, and analyzing complex traffic phenomena in order to anticipate potential criminal behaviors. The book will appeal to researchers, practitioners and decision makers interested in traffic monitoring and analysis, traffic modeling and simulation, mobility and social data mining, as well as members of the police.
This book features a collection of revised and significantly extended versions of the papers accepted for presentation at the 6th International Workshop on New Frontiers in Mining Complex Patterns, NFMCP 2017, held in conjunction with ECML-PKDD 2017 in Skopje, Macedonia, in September 2017. The book is composed of five parts: feature selection and induction; classification prediction; clustering; pattern discovery; applications. The workshop was aimed at discussing and introducing new algorithmic foundations and representation formalisms in complex pattern discovery. Finally, it encouraged the integration of recent results from existing fields, such as Statistics, Machine Learning and Big Data Analytics.
This book includes high-quality, peer-reviewed papers from the International Conference on Recent Advancement in Computer, Communication and Computational Sciences (RACCCS-2018), held at Aryabhatta College of Engineering & Research Center, Ajmer, India on August 10-11, 2018, presenting the latest developments and technical solutions in computational sciences. Networking and communication are the backbone of data science, data- and knowledge engineering, which have a wide scope for implementation in engineering sciences. This book offers insights that reflect the advances in these fields from upcoming researchers and leading academicians across the globe. Covering a variety of topics, such as intelligent hardware and software design, advanced communications, intelligent computing technologies, advanced software engineering, the web and informatics, and intelligent image processing, it helps those in the computer industry and academia use the advances in next-generation communication and computational technology to shape real-world applications.
This book contains a selection of the best papers of the 29th Benelux Conference on Artificial Intelligence, BNAIC 2017, held in Groningen, The Netherlands, in November 2017. The 11 full papers presented in this volume were carefully reviewed and selected from 30 submissions. They address various aspects of artificial intelligence such as natural language processing, agent technology, game theory, problem solving, machine learning, human-agent interaction, AI and education, and data analysis.
An accessible primer on how to create effective graphics from data This book provides students and researchers a hands-on introduction to the principles and practice of data visualization. It explains what makes some graphs succeed while others fail, how to make high-quality figures from data using powerful and reproducible methods, and how to think about data visualization in an honest and effective way. Data Visualization builds the reader's expertise in ggplot2, a versatile visualization library for the R programming language. Through a series of worked examples, this accessible primer then demonstrates how to create plots piece by piece, beginning with summaries of single variables and moving on to more complex graphics. Topics include plotting continuous and categorical variables; layering information on graphics; producing effective "small multiple" plots; grouping, summarizing, and transforming data for plotting; creating maps; working with the output of statistical models; and refining plots to make them more comprehensible. Effective graphics are essential to communicating ideas and a great way to better understand data. This book provides the practical skills students and practitioners need to visualize quantitative data and get the most out of their research findings. Provides hands-on instruction using R and ggplot2 Shows how the "tidyverse" of data analysis tools makes working with R easier and more consistent Includes a library of data sets, code, and functions
This book develops a machine-learning framework for predicting economic growth. It can also be considered as a primer for using machine learning (also known as data mining or data analytics) to answer economic questions. While machine learning itself is not a new idea, advances in computing technology combined with a dawning realization of its applicability to economic questions makes it a new tool for economists.
The book is a collection of best papers presented in International Conference on Intelligent Computing and Applications (ICICA 2016) organized by Department of Computer Engineering, D.Y. Patil College of Engineering, Pune, India during 20-22 December 2016. The book presents original work, information, techniques and applications in the field of computational intelligence, power and computing technology. This volume also talks about image language processing, computer vision and pattern recognition, machine learning, data mining and computational life sciences, management of data including Big Data and analytics, distributed and mobile systems including grid and cloud infrastructure.
The volume presents high quality research papers presented at Second International Conference on Information and Communication Technology for Intelligent Systems (ICICC 2017). The conference was held during 2-4 August 2017, Pune, India and organized communally by Dr. Vishwanath Karad MIT World Peace University, Pune, India at MIT College of Engineering, Pune and supported by All India Council for Technical Education (AICTE) and Council of Scientific and Industrial Research (CSIR). The volume contains research papers focused on ICT for intelligent computation, communications and audio, and video data processing.
This volume, the 36th issue of Transactions on Large-Scale Data- and Knowledge-Centered Systems, contains eight revised, extended papers selected from the 3rd International Conference on Future Data and Security Engineering, FDSE 2016, and the 10th International Conference on Advanced Computing and Applications, ACOMP 2016, which were held in Can Tho City, Vietnam, in November 2016. Topics covered include big data analytics, massive dataset mining, security and privacy, cryptography, access control, deep learning, crowd sourcing, database watermarking, and query processing and optimization.
Data science, data engineering and knowledge engineering requires networking and communication as a backbone and have wide scope of implementation in engineering sciences. Keeping this ideology in preference, this book includes the insights that reflect the advances in these fields from upcoming researchers and leading academicians across the globe. It contains high-quality peer-reviewed papers of 'International Conference on Recent Advancement in Computer, Communication and Computational Sciences (ICRACCCS 2016)', held at Janardan Rai Nagar Rajasthan Vidyapeeth University, Udaipur, India, during 25-26 November 2016. The volume covers variety of topics such as Advanced Communication Networks, Artificial Intelligence and Evolutionary Algorithms, Advanced Software Engineering and Cloud Computing, Image Processing and Computer Vision, and Security. The book will help the perspective readers from computer industry and academia to derive the advances of next generation communication and computational technology and shape them into real life applications.
This book presents high-quality papers from an international forum for research on computational approaches to learning. It includes current research and findings from various research labs, universities and institutions that may lead to development of marketable products. It also provides solid support for these findings in the form of empirical studies, theoretical analysis, or comparison to psychological phenomena. Further, it features work that shows how to apply learning methods to solve important application problems as well as how machine learning research is conducted. The book is divided into two main parts: Machine Learning Techniques, which covers machine learning-related research and findings; and, Data Analytics, which introduces recent developments in this domain. Additionally, the book includes work on data analytics using machine learning techniques. |
You may like...
Opinion Mining and Text Analytics on…
Pantea Keikhosrokiani, Moussa Pourya Asl
Hardcover
R9,276
Discovery Miles 92 760
Transforming Businesses With Bitcoin…
Dharmendra Singh Rajput, Ramjeevan Singh Thakur, …
Hardcover
R5,938
Discovery Miles 59 380
Big Data and Smart Service Systems
Xiwei Liu, Rangachari Anand, …
Hardcover
|