![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > Applications of computing > Databases > Data mining
We intend to edit a Festschrift for Henk Moed combining a "best of" collection of his papers and new contributions (original research papers) by authors having worked and collaborated with him. The outcome of this original combination aims to provide an overview of the advancement of the field in the intersection of bibliometrics, informetrics, science studies and research assessment.
This book presents an accessible introduction to data-driven storytelling. Resulting from unique discussions between data visualization researchers and data journalists, it offers an integrated definition of the topic, presents vivid examples and patterns for data storytelling, and calls out key challenges and new opportunities for researchers and practitioners.
This book includes selected papers presented at the International Conference on Marketing and Technologies (ICMarkTech 2019), held at Maieutica Academic Campus (University Institute of Maia & Polytechnic Institute of Maia) in Maia, Portugal, from 27 to 29 November 2019. It covers up-to-date cutting-edge research on artificial intelligence applied in marketing, virtual and augmented reality in marketing, business intelligence databases and marketing, data mining and big data, marketing data science, web marketing, e-commerce and v-commerce, social media and networking, geomarketing and IoT, marketing automation and inbound marketing, machine learning applied to marketing, customer data management and CRM, and neuromarketing technologies.
Discover a variety of data-mining algorithms that are useful for selecting small sets of important features from among unwieldy masses of candidates, or extracting useful features from measured variables. As a serious data miner you will often be faced with thousands of candidate features for your prediction or classification application, with most of the features being of little or no value. You'll know that many of these features may be useful only in combination with certain other features while being practically worthless alone or in combination with most others. Some features may have enormous predictive power, but only within a small, specialized area of the feature space. The problems that plague modern data miners are endless. This book helps you solve this problem by presenting modern feature selection techniques and the code to implement them. Some of these techniques are: Forward selection component analysis Local feature selection Linking features and a target with a hidden Markov model Improvements on traditional stepwise selection Nominal-to-ordinal conversion All algorithms are intuitively justified and supported by the relevant equations and explanatory material. The author also presents and explains complete, highly commented source code. The example code is in C++ and CUDA C but Python or other code can be substituted; the algorithm is important, not the code that's used to write it. What You Will Learn Combine principal component analysis with forward and backward stepwise selection to identify a compact subset of a large collection of variables that captures the maximum possible variation within the entire set. Identify features that may have predictive power over only a small subset of the feature domain. Such features can be profitably used by modern predictive models but may be missed by other feature selection methods. Find an underlying hidden Markov model that controls the distributions of feature variables and the target simultaneously. The memory inherent in this method is especially valuable in high-noise applications such as prediction of financial markets. Improve traditional stepwise selection in three ways: examine a collection of 'best-so-far' feature sets; test candidate features for inclusion with cross validation to automatically and effectively limit model complexity; and at each step estimate the probability that our results so far could be just the product of random good luck. We also estimate the probability that the improvement obtained by adding a new variable could have been just good luck. Take a potentially valuable nominal variable (a category or class membership) that is unsuitable for input to a prediction model, and assign to each category a sensible numeric value that can be used as a model input. Who This Book Is For Intermediate to advanced data science programmers and analysts.
This book describes in detail sampling techniques that can be used for unsupervised and supervised cases, with a focus on sampling techniques for machine learning algorithms. It covers theory and models of sampling methods for managing scalability and the "curse of dimensionality", their implementations, evaluations, and applications. A large part of the book is dedicated to database comprising standard feature vectors, and a special section is reserved to the handling of more complex objects and dynamic scenarios. The book is ideal for anyone teaching or learning pattern recognition and interesting teaching or learning pattern recognition and is interested in the big data challenge. It provides an accessible introduction to the field and discusses the state of the art concerning sampling techniques for supervised and unsupervised task. Provides a comprehensive description of sampling techniques for unsupervised and supervised tasks; Describe implementation and evaluation of algorithms that simultaneously manage scalable problems and curse of dimensionality; Addresses the role of sampling in dynamic scenarios, sampling when dealing with complex objects, and new challenges arising from big data. "This book represents a timely collection of state-of-the art research of sampling techniques, suitable for anyone who wants to become more familiar with these helpful techniques for tackling the big data challenge." M. Emre Celebi, Ph.D., Professor and Chair, Department of Computer Science, University of Central Arkansas "In science the difficulty is not to have ideas, but it is to make them work" From Carlo Rovelli
Big Data in medical science - what exactly is that? What are the potentials for healthcare management? Where is Big Data at the moment? Which risk factors need to be kept in mind? What is hype and what is real potential? This book provides an impression of the new possibilities of networked data analysis and "Big Data" - for and within medical science and healthcare management. Big Data is about the collection, storage, search, distribution, statistical analysis and visualization of large amounts of data. This is especially relevant in healthcare management, as the amount of digital information is growing exponentially. An amount of data corresponding to 12 million novels emerges during the time of a single hospital stay. These are dimensions that cannot be dealt with without IT technologies. What can we do with the data that are available today? What will be possible in the next few years? Do we want everything that is possible? Who protects the data from wrong usage? More importantly, who protects the data from NOT being used? Big Data is the "resource of the 21st century" and might change the world of medical science more than we understand, realize and want at the moment. The core competence of Big Data will be the complete and correct collection, evaluation and interpretation of data. This also makes it possible to estimate the frame conditions and possibilities of the automation of daily (medical) routine. Can Big Data in medical science help to better understand fundamental problems of health and illness, and draw consequences accordingly? Big Data also means the overcoming of sector borders in healthcare management. The specialty of Big Data analysis will be the new quality of the outcomes of the combination of data that were not related before. That is why the editor of the book gives a voice to 30 experts, working in a variety of fields, such as in hospitals, in health insurance or as medical practitioners. The authors show potentials, risks, concrete practical examples, future scenarios, and come up with possible answers for the field of information technology and data privacy.
This book discusses the challenges facing current research in knowledge discovery and data mining posed by the huge volumes of complex data now gathered in various real-world applications (e.g., business process monitoring, cybersecurity, medicine, language processing, and remote sensing). The book consists of 14 chapters covering the latest research by the authors and the research centers they represent. It illustrates techniques and algorithms that have recently been developed to preserve the richness of the data and allow us to efficiently and effectively identify the complex information it contains. Presenting the latest developments in complex pattern mining, this book is a valuable reference resource for data science researchers and professionals in academia and industry.
This two-volume set constitutes the refereed proceedings of the workshops which complemented the 19th Joint European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD, held in Wurzburg, Germany, in September 2019. The 70 full papers and 46 short papers presented in the two-volume set were carefully reviewed and selected from 200 submissions. The two volumes (CCIS 1167 and CCIS 1168) present the papers that have been accepted for the following workshops: Workshop on Automating Data Science, ADS 2019; Workshop on Advances in Interpretable Machine Learning and Artificial Intelligence and eXplainable Knowledge Discovery in Data Mining, AIMLAI-XKDD 2019; Workshop on Decentralized Machine Learning at the Edge, DMLE 2019; Workshop on Advances in Managing and Mining Large Evolving Graphs, LEG 2019; Workshop on Data and Machine Learning Advances with Multiple Views; Workshop on New Trends in Representation Learning with Knowledge Graphs; Workshop on Data Science for Social Good, SoGood 2019; Workshop on Knowledge Discovery and User Modelling for Smart Cities, UMCIT 2019; Workshop on Data Integration and Applications Workshop, DINA 2019; Workshop on Machine Learning for Cybersecurity, MLCS 2019; Workshop on Sports Analytics: Machine Learning and Data Mining for Sports Analytics, MLSA 2019; Workshop on Categorising Different Types of Online Harassment Languages in Social Media; Workshop on IoT Stream for Data Driven Predictive Maintenance, IoTStream 2019; Workshop on Machine Learning and Music, MML 2019; Workshop on Large-Scale Biomedical Semantic Indexing and Question Answering, BioASQ 2019.
This book reports on cutting-edge theories and methods for analyzing complex systems, such as transportation and communication networks and discusses multi-disciplinary approaches to dependability problems encountered when dealing with complex systems in practice. The book presents the most noteworthy methods and results discussed at the International Conference on Reliability and Statistics in Transportation and Communication (RelStat), which took place in Riga, Latvia on October 16 - 19, 2019. It spans a broad spectrum of topics, from mathematical models and design methodologies, to software engineering, data security and financial issues, as well as practical problems in technical systems, such as transportation and telecommunications, and in engineering education.
Technological advancements have extracted a vast amount of useful knowledge and information for applications and services. These developments have evoked intelligent solutions that have been utilsed in efforts to secure this data and avoid potential complex problems. Advances in Secure Computing, Internet Services, and Applications presents current research on the applications of computational intelligence in order to focus on the challenge humans face when securing knowledge and data. This book is a vital reference source for researchers, lecturers, professors, students, and developers, who have interest in secure computing and recent advanced in real life applications.
This book explores and discusses various aspects of intelligent systems technologies and their applications. Presenting the refereed post-conference proceedings of the 5th International Symposium on Intelligent Systems Technologies and Applications (ISTA 2019), held at the Indian Institute of Information Technology and Management-Kerala (IIITM-K), Trivandrum, India, on December 18-21, 2019, it covers a variety of topics, such as knowledge discovery, data mining, pattern recognition, signal processing, intelligent image processing, artificial vision, ad hoc and wireless sensor networks, business intelligence and big data analytics.
This book proposes new technologies and discusses future solutions for ICT design infrastructures, as reflected in high-quality papers presented at the 4th International Conference on ICT for Sustainable Development (ICT4SD 2019), held in Goa, India, on 5-6 July 2019. The conference provided a valuable forum for cutting-edge research discussions among pioneering researchers, scientists, industrial engineers, and students from all around the world. Bringing together experts from different countries, the book explores a range of central issues from an international perspective.
Historically, the term quality was used to measure performance in the context of products, processes and systems. With rapid growth in data and its usage, data quality is becoming quite important. It is important to connect these two aspects of quality to ensure better performance. This book provides a strong connection between the concepts in data science and process engineering that is necessary to ensure better quality levels and takes you through a systematic approach to measure holistic quality with several case studies. Features: Integrates data science, analytics and process engineering concepts Discusses how to create value by considering data, analytics and processes Examines metrics management technique that will help evaluate performance levels of processes, systems and models, including AI and machine learning approaches Reviews a structured approach for analytics execution
This book features high-quality research papers presented at the 2nd International Conference on Computational Intelligence in Pattern Recognition (CIPR 2020), held at the Institute of Engineering and Management, Kolkata, West Bengal, India, on 4-5 January 2020. It includes practical development experiences in various areas of data analysis and pattern recognition, focusing on soft computing technologies, clustering and classification algorithms, rough set and fuzzy set theory, evolutionary computations, neural science and neural network systems, image processing, combinatorial pattern matching, social network analysis, audio and video data analysis, data mining in dynamic environments, bioinformatics, hybrid computing, big data analytics and deep learning. It also provides innovative solutions to the challenges in these areas and discusses recent developments.
This book presents selected research papers on current developments in the fields of soft computing and signal processing from the Second International Conference on Soft Computing and Signal Processing (ICSCSP 2019). The respective contributions address topics such as soft sets, rough sets, fuzzy logic, neural networks, genetic algorithms and machine learning, and discuss various aspects of these topics, e.g. technological considerations, product implementation, and application issues.
This book gathers papers presented at the 13th International Conference on Genetic and Evolutionary Computing (ICGEC 2019), which was held in Qingdao, China, from 1st to 3rd, November 2019. Since it was established, in 2006, the ICGEC conference series has been devoted to new approaches with a focus on evolutionary computing. Today, it is a forum for the researchers and professionals in all areas of computational intelligence including evolutionary computing, machine learning, soft computing, data mining, multimedia and signal processing, swarm intelligence and security. The book appeals to policymakers, academics, educators, researchers in pedagogy and learning theory, school teachers, and other professionals in the learning industry, and further and continuing education.
New technology in vehicles is transforming the way people move around as well as what they do in their vehicles. How does one communicate with an in-car speech system and how does this vary by language or cultural community? This book explores this process by focusing on the communication practices that people engage in when using their in-car systems and when talking about their vehicles with co-passengers. Chapters present a robust theory and methodology for studying communication in cars, how tasks are begun and ended, how people switch between tasks, how non-task talk appears, what ways and styles of communication drivers prefer, and how they expect the system voice to respond, among other things. Particular attention is given to cultural preferences as they are evident in this communication; these preferences are found to ground various trajectories in the use and meaning of in-car communication practices. The book explores these matters with a focus on the United States and Mainland China. Implications are drawn for the design and utilization of in-car communication systems.
The book features original papers from the 2nd International Conference on Smart IoT Systems: Innovations and Computing (SSIC 2019), presenting scientific work related to smart solution concepts. It discusses computational collective intelligence, which includes interactions between smart devices, smart environments and smart interactions, as well as information technology support for such areas. It also describes how to successfully approach various government organizations for funding for business and the humanitarian technology development projects. Thanks to the high-quality content and the broad range of the topics covered, the book appeals to researchers pursuing advanced studies.
Data structures is a key course for computer science and related majors. This book presents a variety of practical or engineering cases and derives abstract concepts from concrete problems. Besides basic concepts and analysis methods, it introduces basic data types such as sequential list, tree as well as graph. This book can be used as an undergraduate textbook, as a training textbook or a self-study textbook for engineers.
The Data Book: Collection and Management of Research Data is the first practical book written for researchers and research team members covering how to collect and manage data for research. The book covers basic types of data and fundamentals of how data grow, move and change over time. Focusing on pre-publication data collection and handling, the text illustrates use of these key concepts to match data collection and management methods to a particular study, in essence, making good decisions about data. The first section of the book defines data, introduces fundamental types of data that bear on methodology to collect and manage them, and covers data management planning and research reproducibility. The second section covers basic principles of and options for data collection and processing emphasizing error resistance and traceability. The third section focuses on managing the data collection and processing stages of research such that quality is consistent and ultimately capable of supporting conclusions drawn from data. The final section of the book covers principles of data security, sharing, and archival. This book will help graduate students and researchers systematically identify and implement appropriate data collection and handling methods.
This book gathers selected high-quality research papers presented at the Fourth International Congress on Information and Communication Technology, held at Brunel University, London, on February 27-28, 2019. It discusses emerging topics pertaining to information and communication technology (ICT) for managerial applications, e-governance, e-agriculture, e-education and computing technologies, the Internet of things (IoT), and e-mining. Written by respected experts and researchers working on ICT, the book offers a valuable asset for young researchers involved in advanced studies.
How can we select the best performing data-driven model? How can we rigorously estimate its generalization error? Statistical learning theory answers these questions by deriving non-asymptotic bounds on the generalization error of a model or, in other words, by upper bounding the true error of the learned model based just on quantities computed on the available data. However, for a long time, Statistical learning theory has been considered only an abstract theoretical framework, useful for inspiring new learning approaches, but with limited applicability to practical problems. The purpose of this book is to give an intelligible overview of the problems of model selection and error estimation, by focusing on the ideas behind the different statistical learning theory approaches and simplifying most of the technical aspects with the purpose of making them more accessible and usable in practice. The book starts by presenting the seminal works of the 80's and includes the most recent results. It discusses open problems and outlines future directions for research.
This book presents the Recommender System for Improving Customer Loyalty. New and innovative products have begun appearing from a wide variety of countries, which has increased the need to improve the customer experience. When a customer spends hundreds of thousands of dollars on a piece of equipment, keeping it running efficiently is critical to achieving the desired return on investment. Moreover, managers have discovered that delivering a better customer experience pays off in a number of ways. A study of publicly traded companies conducted by Watermark Consulting found that from 2007 to 2013, companies with a better customer service generated a total return to shareholders that was 26 points higher than the S&P 500. This is only one of many studies that illustrate the measurable value of providing a better service experience. The Recommender System presented here addresses several important issues. (1) It provides a decision framework to help managers determine which actions are likely to have the greatest impact on the Net Promoter Score. (2) The results are based on multiple clients. The data mining techniques employed in the Recommender System allow users to "learn" from the experiences of others, without sharing proprietary information. This dramatically enhances the power of the system. (3) It supplements traditional text mining options. Text mining can be used to identify the frequency with which topics are mentioned, and the sentiment associated with a given topic. The Recommender System allows users to view specific, anonymous comments associated with actual customers. Studying these comments can provide highly accurate insights into the steps that can be taken to improve the customer experience. (4) Lastly, the system provides a sensitivity analysis feature. In some cases, certain actions can be more easily implemented than others. The Recommender System allows managers to "weigh" these actions and determine which ones would have a greater impact. |
![]() ![]() You may like...
Debugging Systems-on-Chip…
Bart Vermeulen, Kees Goossens
Hardcover
Technology Mapping for LUT-Based FPGA
Marcin Kubica, Adam Opara, …
Hardcover
R2,882
Discovery Miles 28 820
Three-dimensional Integrated Circuit…
Vasilis F. Pavlidis, Eby G. Friedman
Paperback
R1,925
Discovery Miles 19 250
Reconfigurable Switched-Capacitor Power…
Dongsheng Ma, Rajdeep Bondade
Hardcover
R2,873
Discovery Miles 28 730
System-on-Chip Security - Validation and…
Farimah Farahmandi, Yuanwen Huang, …
Hardcover
R3,155
Discovery Miles 31 550
|