![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > Applications of computing > Databases > Data mining
This book gathers high-quality research papers presented at the Second International Conference on Innovative Computing and Communication (ICICC 2019), which was held at the VSB - Technical University of Ostrava, Czech Republic, on 21-22 March 2019. Highlighting innovative papers by scientists, scholars, students, and industry experts in the fields of computing and communication, the book promotes the transformation of fundamental research into institutional and industrialized research, and the translation of applied research into real-world applications.
This book reports on new theories and applications in the field of intelligent systems and computing. It covers computational and artificial intelligence methods, as well as advances in computer vision, current issues in big data and cloud computing, computation linguistics, and cyber-physical systems. It also reports on important topics in intelligent information management. Written by active researchers, the respective chapters are based on selected papers presented at the XIV International Scientific and Technical Conference on Computer Science and Information Technologies (CSIT 2019), held on September 17-20, 2019, in Lviv, Ukraine. The conference was jointly organized by the Lviv Polytechnic National University, Ukraine, the Kharkiv National University of Radio Electronics, Ukraine, and the Technical University of Lodz, Poland, under patronage of Ministry of Education and Science of Ukraine. Given its breadth of coverage, the book provides academics and professionals with extensive information and a timely snapshot of the field of intelligent systems, and is sure to foster new discussions and collaborations among different groups.
This book gathers selected high-quality research papers presented at the Fourth International Congress on Information and Communication Technology, held at Brunel University, London, on February 27-28, 2019. It discusses emerging topics pertaining to information and communication technology (ICT) for managerial applications, e-governance, e-agriculture, e-education and computing technologies, the Internet of things (IoT), and e-mining. Written by respected experts and researchers working on ICT, the book offers a valuable asset for young researchers involved in advanced studies.
This book of peer-reviewed contributions presents the latest findings in classification, statistical learning, data analysis and related areas, including supervised and unsupervised classification, clustering, statistical analysis of mixed-type data, big data analysis, statistical modeling, graphical models and social networks. It covers both methodological aspects as well as applications to a wide range of fields such as economics, architecture, medicine, data management, consumer behavior and the gender gap. In addition, it describes the basic features of the software behind the data analysis results, and provides links to the corresponding codes and data sets where necessary. This book is intended for researchers and practitioners who are interested in the latest developments and applications in the field of data analysis and classification. It gathers selected and peer-reviewed contributions presented at the 11th Scientific Meeting of the Classification and Data Analysis Group of the Italian Statistical Society (CLADAG 2017), held in Milan, Italy, on September 13-15, 2017.
This book presents practical development experiences in different areas of data analysis and pattern recognition, focusing on soft computing technologies, clustering and classification algorithms, rough set and fuzzy set theory, evolutionary computations, neural science and neural network systems, image processing, combinatorial pattern matching, social network analysis, audio and video data analysis, data mining in dynamic environments, bioinformatics, hybrid computing, big data analytics and deep learning. It also provides innovative solutions to the challenges in these areas and discusses recent developments.
This book presents the fundamentals and advances in the field of data visualization and knowledge engineering, supported by case studies and practical examples. Data visualization and engineering has been instrumental in the development of many data-driven products and processes. As such the book promotes basic research on data visualization and knowledge engineering toward data engineering and knowledge. Visual data exploration focuses on perception of information and manipulation of data to enable even non-expert users to extract knowledge. A number of visualization techniques are used in a variety of systems that provide users with innovative ways to interact with data and reveal patterns. A variety of scalable data visualization techniques are required to deal with constantly increasing volume of data in different formats. Knowledge engineering deals with the simulation of the exchange of ideas and the development of smart information systems in which reasoning and knowledge play an important role. Presenting research in areas like data visualization and knowledge engineering, this book is a valuable resource for students, scholars and researchers in the field. Each chapter is self-contained and offers an in-depth analysis of real-world applications. It discusses topics including (but not limited to) spatial data visualization; biomedical visualization and applications; image/video summarization and visualization; perception and cognition in visualization; visualization taxonomies and models; abstract data visualization; information and graph visualization; knowledge engineering; human-machine cooperation; metamodeling; natural language processing; architectures of database, expert and knowledge-based systems; knowledge acquisition methods; applications, case studies and management issues: data administration issues and knowledge; tools for specifying and developing data and knowledge bases using tools based on communication aspects involved in implementing, designing and using KBSs in cyberspace; Semantic Web.
Malicious hackers utilize the World Wide Web to share knowledge. Analyzing the online communication of these threat actors can help reduce the risk of attacks. This book shifts attention from the defender environment to the attacker environment, offering a new security paradigm of 'proactive cyber threat intelligence' that allows defenders of computer networks to gain a better understanding of their adversaries by analyzing assets, capabilities, and interest of malicious hackers. The authors propose models, techniques, and frameworks based on threat intelligence mined from the heart of the underground cyber world: the malicious hacker communities. They provide insights into the hackers themselves and the groups they form dynamically in the act of exchanging ideas and techniques, buying or selling malware, and exploits. The book covers both methodology - a hybridization of machine learning, artificial intelligence, and social network analysis methods - and the resulting conclusions, detailing how a deep understanding of malicious hacker communities can be the key to designing better attack prediction systems.
This book presents state-of-the-art solutions to the theoretical and practical challenges stemming from the leverage of big data and its computational intelligence in supporting smart network operation, management, and optimization. In particular, the technical focus covers the comprehensive understanding of network big data, efficient collection and management of network big data, distributed and scalable online analytics for network big data, and emerging applications of network big data for computational intelligence.
This proceeding discuss the latest solutions, scientific findings and methods for solving intriguing problems in the fields of data mining, computational intelligence, big data analytics, and soft computing. This gathers outstanding papers from the fifth International Conference on "Computational Intelligence in Data Mining" (ICCIDM), and offer a "sneak preview" of the strengths and weaknesses of trending applications, together with exciting advances in computational intelligence, data mining, and related fields.
The second volume of this book includes selected high-quality research papers presented at the Fourth International Congress on Information and Communication Technology, which was held at Brunel University, London, on February 27-28, 2019. It discusses emerging topics pertaining to information and communication technology (ICT) for managerial applications, e-governance, e-agriculture, e-education and computing technologies, the Internet of Things (IoT), and e-mining. Written by respected experts and researchers actively working in ICT, the book offers a valuable resource, especially for researchers who are newcomers to the field.
This book constitutes the refereed proceedings of the 20th International Conference on Data Analytics and Management in Data Intensive Domains, DAMDID/RCDL 2018, held in Moscow, Russia, in October 2018.The 9 revised full papers presented together with three invited papers were carefully reviewed and selected from 54 submissions. The papers are organized in the following topical sections: FAIR data infrastructures, interoperability and reuse; knowledge representation; data models; data analysis in astronomy; text search and processing; distributed computing; information extraction from text.
This book constitutes the refereed proceedings of the 24th International Conference on Applications of Natural Language to Information Systems, NLDB 2019, held in Salford, UK, in June 2019. The 21 full papers and 16 short papers were carefully reviewed and selected from 75 submissions. The papers are organized in the following topical sections: argumentation mining and applications; deep learning, neural languages and NLP; social media and web analytics; question answering; corpus analysis; semantic web, open linked data, and ontologies; natural language in conceptual modeling; natural language and ubiquitous computing; and big data and business intelligence.
This two-volume set LNCS 11625 and 11626 constitutes the refereed proceedings of the 20th International Conference on Artificial Intelligence in Education, AIED 2019, held in Chicago, IL, USA, in June 2019. The 45 full papers presented together with 41 short, 10 doctoral consortium, 6 industry, and 10 workshop papers were carefully reviewed and selected from 177 submissions. AIED 2019 solicits empirical and theoretical papers particularly in the following lines of research and application: Intelligent and interactive technologies in an educational context; Modelling and representation; Models of teaching and learning; Learning contexts and informal learning; Evaluation; Innovative applications; Intelligent techniques to support disadvantaged schools and students, inequity and inequality in education.
This two-volume set LNCS 11554 and 11555 constitutes the refereed proceedings of the 16th International Symposium on Neural Networks, ISNN 2019, held in Moscow, Russia, in July 2019. The 111 papers presented in the two volumes were carefully reviewed and selected from numerous submissions. The papers were organized in topical sections named: Learning System, Graph Model, and Adversarial Learning; Time Series Analysis, Dynamic Prediction, and Uncertain Estimation; Model Optimization, Bayesian Learning, and Clustering; Game Theory, Stability Analysis, and Control Method; Signal Processing, Industrial Application, and Data Generation; Image Recognition, Scene Understanding, and Video Analysis; Bio-signal, Biomedical Engineering, and Hardware.
This book constitutes the refereed proceedings of the 15th World Congress on Services, SERVICES 2019, held as part of the Services Conference Federation, SCF 2019, in San Diego, USA, in June 2019. The 11 full papers and 2 short papers presented were carefully reviewed and selected from 14 submissions. The papers cover topics in the field of software engineering foundations and applications with a focus on novel approaches for engineering requirements, design and architectures, testing, maintenance and evolution, model-driven development, software processes, metrics, quality assurance and new software economics models, search-based software engineering, benefiting day-to-day services sectors and derived through experiences, with appreciation to scale, pragmatism, transparency, compliance and/or dependability.
This book constitutes the refereed proceedings of the 33rd Annual IFIP WG 11.3 Conference on Data and Applications Security and Privacy, DBSec 2019, held in Charleston, SC, USA, in July 2018. The 21 full papers presented were carefully reviewed and selected from 52 submissions. The papers present high-quality original research from academia, industry, and government on theoretical and practical aspects of information security. They are organized in topical sections on attacks, mobile and Web security, privacy, security protocol practices, distributed systems, source code security, and malware.
This book gathers high-quality research papers presented at the Global AI Congress 2019, which was organized by the Institute of Engineering and Management, Kolkata, India, on 12-14 September 2019. Sharing contributions prepared by researchers, practitioners, developers and experts in the areas of artificial intelligence, the book covers the areas of AI for E-commerce and web applications, AI and sensors, augmented reality, big data, brain computing interfaces, computer vision, cognitive radio networks, data mining, deep learning, expert systems, fuzzy sets and systems, image processing, knowledge representation, nature-inspired computing, quantum machine learning, reasoning, robotics and autonomous systems, robotics and the IoT, social network analysis, speech processing, video processing, and virtual reality.
This important text/reference presents a comprehensive review of techniques for taxonomy matching, discussing matching algorithms, analyzing matching systems, and comparing matching evaluation approaches. Different methods are investigated in accordance with the criteria of the Ontology Alignment Evaluation Initiative (OAEI). The text also highlights promising developments and innovative guidelines, to further motivate researchers and practitioners in the field. Topics and features: discusses the fundamentals and the latest developments in taxonomy matching, including the related fields of ontology matching and schema matching; reviews next-generation matching strategies, matching algorithms, matching systems, and OAEI campaigns, as well as alternative evaluations; examines how the latest techniques make use of different sources of background knowledge to enable precise matching between repositories; describes the theoretical background, state-of-the-art research, and practical real-world applications; covers the fields of dynamic taxonomies, personalized directories, catalog segmentation, and recommender systems. This stimulating book is an essential reference for practitioners engaged in data science and business intelligence, and for researchers specializing in taxonomy matching and semantic similarity assessment. The work is also suitable as a supplementary text for advanced undergraduate and postgraduate courses on information and metadata management.
The field of data mining lies at the confluence of predictive analytics, statistical analysis, and business intelligence. Due to the ever-increasing complexity and size of data sets and the wide range of applications in computer science, business, and health care, the process of discovering knowledge in data is more relevant than ever before. This book provides the tools needed to thrive in today s big data world. The author demonstrates how to leverage a company s existing databases to increase profits and market share, and carefully explains the most current data science methods and techniques. The reader will learn data mining by doing data mining . By adding chapters on data modelling preparation, imputation of missing data, and multivariate statistical analysis, Discovering Knowledge in Data, Second Edition remains the eminent reference on data mining . * The second edition of a highly praised, successful reference on data mining, with thorough coverage of big data applications, predictive analytics, and statistical analysis. * Includes new chapters on Multivariate Statistics, Preparing to Model the Data, and Imputation of Missing Data, and an Appendix on Data Summarization and Visualization * Offers extensive coverage of the R statistical programming language * Contains 280 end-of-chapter exercises * Includes a companion website for university instructors who adopt the book
This book constitutes the refereed proceedings of the Second International Conference on Emerging Technologies in Computer Engineering: Microservices in Big Data Analytics, ICETCE 2019, held in Jaipur, India, in February 2019. The 28 revised full papers along with 1 short paper presented were carefully reviewed and selected from 253 submissions. ICETCE conference aims to showcase advanced technologies, techniques, innovations and equipments in computer engineering. It provides a platform for researchers, scholars, experts, technicians, government officials and industry personnel from all over the world to discuss and share their valuable ideas and experiences.
This two-volume set LNCS 11554 and 11555 constitutes the refereed proceedings of the 16th International Symposium on Neural Networks, ISNN 2019, held in Moscow, Russia, in July 2019. The 111 papers presented in the two volumes were carefully reviewed and selected from numerous submissions. The papers were organized in topical sections named: Learning System, Graph Model, and Adversarial Learning; Time Series Analysis, Dynamic Prediction, and Uncertain Estimation; Model Optimization, Bayesian Learning, and Clustering; Game Theory, Stability Analysis, and Control Method; Signal Processing, Industrial Application, and Data Generation; Image Recognition, Scene Understanding, and Video Analysis; Bio-signal, Biomedical Engineering, and Hardware.
To tackle the challenges of the road estimation task, many works employ a fusion of multiple sources. By that, a commonly made assumption is that the sources always are equally reliable. However, this assumption is inappropriate since each source has certain advantages and drawbacks depending on the operational scenarios. Therefore, Tuan Tran Nguyen proposes a novel concept by incorporating reliabilities into the multi-source fusion so that the road estimation task can alternately select only the most reliable sources. Thereby, the author estimates the reliability for each source online using classifiers trained with the sensor measurements, the past performance and the context. Using real data recordings, he shows via experimental results that the presented reliability-aware fusion increases the availability of automated driving up to 7 percentage points compared to the average fusion.About the Author: Tuan Tran Nguyen received the Master's degree in computer science and the Ph.D. degree from Otto-von-Guericke University Magdeburg, Germany, in 2013 and 2019, respectively. His research focuses on methods and architectures for reliability-based sensor fusion in intelligent vehicles.
This book features high-quality research papers presented at the 2nd International Conference on Computational Intelligence in Pattern Recognition (CIPR 2020), held at the Institute of Engineering and Management, Kolkata, West Bengal, India, on 4-5 January 2020. It includes practical development experiences in various areas of data analysis and pattern recognition, focusing on soft computing technologies, clustering and classification algorithms, rough set and fuzzy set theory, evolutionary computations, neural science and neural network systems, image processing, combinatorial pattern matching, social network analysis, audio and video data analysis, data mining in dynamic environments, bioinformatics, hybrid computing, big data analytics and deep learning. It also provides innovative solutions to the challenges in these areas and discusses recent developments.
The two-volume set LNBIP 353 and 354 constitutes the proceedings of the 22nd International Conference on Business Information Systems, BIS 2019, held in Seville, Spain, in June 2019. The theme of the BIS 2019 was "Data Science for Business Information Systems", inspiring researchers to share theoretical and practical knowledge of the different aspects related to Data Science in enterprises. The 67 papers presented in these proceedings were carefully reviewed and selected from 223 submissions. The contributions were organized in topical sections as follows: Part I: Big Data and Data Science; Artificial Intelligence; ICT Project Management; and Smart Infrastructure. Part II: Social Media and Web-based Systems; and Applications, Evaluations and Experiences.
The work presents new approaches to Machine Learning for Cyber Physical Systems, experiences and visions. It contains some selected papers from the international Conference ML4CPS - Machine Learning for Cyber Physical Systems, which was held in Lemgo, October 25th-26th, 2017. Cyber Physical Systems are characterized by their ability to adapt and to learn: They analyze their environment and, based on observations, they learn patterns, correlations and predictive models. Typical applications are condition monitoring, predictive maintenance, image processing and diagnosis. Machine Learning is the key technology for these developments. |
![]() ![]() You may like...
Walking in the Brecon Beacons - 45…
Andy Davies, David Whittaker
Paperback
R437
Discovery Miles 4 370
|