0
Your cart

Your cart is empty

Books > Computing & IT > Applications of computing > Artificial intelligence > Knowledge-based systems / expert systems

Buy Now

Modern Data Mining Algorithms in C++ and CUDA C - Recent Developments in Feature Extraction and Selection Algorithms for Data Science (Paperback, 1st ed.) Loot Price: R1,383
Discovery Miles 13 830
You Save: R323 (19%)
Modern Data Mining Algorithms in C++ and CUDA C - Recent Developments in Feature Extraction and Selection Algorithms for Data...

Modern Data Mining Algorithms in C++ and CUDA C - Recent Developments in Feature Extraction and Selection Algorithms for Data Science (Paperback, 1st ed.)

Timothy Masters

 (sign in to rate)
List price R1,706 Loot Price R1,383 Discovery Miles 13 830 | Repayment Terms: R130 pm x 12* You Save R323 (19%)

Bookmark and Share

Expected to ship within 10 - 15 working days

Discover a variety of data-mining algorithms that are useful for selecting small sets of important features from among unwieldy masses of candidates, or extracting useful features from measured variables. As a serious data miner you will often be faced with thousands of candidate features for your prediction or classification application, with most of the features being of little or no value. You'll know that many of these features may be useful only in combination with certain other features while being practically worthless alone or in combination with most others. Some features may have enormous predictive power, but only within a small, specialized area of the feature space. The problems that plague modern data miners are endless. This book helps you solve this problem by presenting modern feature selection techniques and the code to implement them. Some of these techniques are: Forward selection component analysis Local feature selection Linking features and a target with a hidden Markov model Improvements on traditional stepwise selection Nominal-to-ordinal conversion All algorithms are intuitively justified and supported by the relevant equations and explanatory material. The author also presents and explains complete, highly commented source code. The example code is in C++ and CUDA C but Python or other code can be substituted; the algorithm is important, not the code that's used to write it. What You Will Learn Combine principal component analysis with forward and backward stepwise selection to identify a compact subset of a large collection of variables that captures the maximum possible variation within the entire set. Identify features that may have predictive power over only a small subset of the feature domain. Such features can be profitably used by modern predictive models but may be missed by other feature selection methods. Find an underlying hidden Markov model that controls the distributions of feature variables and the target simultaneously. The memory inherent in this method is especially valuable in high-noise applications such as prediction of financial markets. Improve traditional stepwise selection in three ways: examine a collection of 'best-so-far' feature sets; test candidate features for inclusion with cross validation to automatically and effectively limit model complexity; and at each step estimate the probability that our results so far could be just the product of random good luck. We also estimate the probability that the improvement obtained by adding a new variable could have been just good luck. Take a potentially valuable nominal variable (a category or class membership) that is unsuitable for input to a prediction model, and assign to each category a sensible numeric value that can be used as a model input. Who This Book Is For Intermediate to advanced data science programmers and analysts.

General

Imprint: Apress
Country of origin: United States
Release date: June 2020
First published: 2020
Authors: Timothy Masters
Dimensions: 254 x 178mm (L x W)
Format: Paperback
Pages: 228
Edition: 1st ed.
ISBN-13: 978-1-4842-5987-0
Categories: Books > Science & Mathematics > Mathematics > Probability & statistics
Books > Computing & IT > General theory of computing > Data structures
Books > Computing & IT > Computer programming > Algorithms & procedures
Books > Computing & IT > Computer programming > Compilers & interpreters
Books > Computing & IT > Computer programming > Programming languages > General
Books > Computing & IT > Applications of computing > Databases > Data capture & analysis
Books > Computing & IT > Applications of computing > Databases > Data mining
Books > Computing & IT > Applications of computing > Artificial intelligence > Knowledge-based systems / expert systems
Promotions
LSN: 1-4842-5987-4
Barcode: 9781484259870

Is the information for this product incomplete, wrong or inappropriate? Let us know about it.

Does this product have an incorrect or missing image? Send us a new image.

Is this product missing categories? Add more categories.

Review This Product

No reviews yet - be the first to create one!

You might also like..

Exploring Future Opportunities of…
Madhulika Bhatia, Tanupriya Choudhury, … Hardcover R7,626 Discovery Miles 76 260
Applied Affective Computing
Leimin Tian, Sharon Oviatt, … Hardcover R2,764 Discovery Miles 27 640
Probabilistic and Causal Inference - The…
Hector Geffner, Rina Dechter, … Hardcover R4,428 Discovery Miles 44 280
Pattern-Based Constraint Satisfaction…
Denis Berthier Hardcover R2,107 Discovery Miles 21 070
The Future You - How Artificial…
Harry Glorikian Hardcover R859 Discovery Miles 8 590
Research Anthology on Artificial Neural…
Information R Management Association Hardcover R14,785 Discovery Miles 147 850
Research Anthology on Artificial Neural…
Information R Management Association Hardcover R14,774 Discovery Miles 147 740
Research Anthology on Artificial Neural…
Information R Management Association Hardcover R14,768 Discovery Miles 147 680
The Future of Technology in Education…
Harib Shaqsy Hardcover R953 R820 Discovery Miles 8 200
Foundation Models for Natural Language…
Gerhard PaaƟ, Sven Giesselbach Hardcover R1,427 R952 Discovery Miles 9 520
Deep Learning Applications for…
Monica R. Mundada, Seema S., … Hardcover R7,586 Discovery Miles 75 860
Socrates Digital (TM) for Learning and…
Mark Salisbury Hardcover R6,766 Discovery Miles 67 660

See more

Partners