![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > Applications of computing > Databases > Data mining
This book constitutes the thoroughly refereed short papers and workshop papers of the 19th East European Conference on Advances in Databases and Information Systems, ADBIS 2015, held in Poitiers, France, in September 2015. The 31 revised full papers and 18 short papers presented were carefully selected and reviewed from 135 submissions. The papers are organized in topical sections on ADBIS Short Papers; Second International Workshop on Big Data Applications and Principles, BigDap 2015; First International Workshop on Data Centered Smart Applications, DCSA 2015; Fourth International Workshop on GPUs in Databases, GID 2015; First International Workshop on Managing Evolving Business Intelligence Systems, MEBIS 2015; Fourth International Workshop on Ontologies Meet Advanced Information Systems, OAIS 2015; First International Workshop on Semantic Web for Cultural Heritage, SW4CH 2015; First International Workshop on Information Systems for AlaRm Diffusion, WISARD 2015.
This book contains a selection of refereed and revised papers from three special tracks: Ad-hoc and Wireless Sensor Networks, Intelligent Distributed Computing and, Business Intelligence and Big Data Analytics originally presented at the International Symposium on Intelligent Systems Technologies and Applications (ISTA), August 10-13, 2015, Kochi, India.
The two-volume set CCIS 662 and CCIS 663 constitutes the refereed proceedings of the 7th Chinese Conference on Pattern Recognition, CCPR 2016, held in Chengdu, China, in November 2016.The 121 revised papers presented in two volumes were carefully reviewed and selected from 199 submissions. The papers are organized in topical sections on robotics; computer vision; basic theory of pattern recognition; image and video processing; speech and language; emotion recognition.
This book constitutes the thoroughly refereed proceedings of the 5th National Conference of Social Media Processing, SMP 2016, held in Nanchang, China, in October 2016. The 24 revised full papers presented were carefully reviewed and selected from 109 submissions. The papers address issues such as: mining social media and applications; natural language processing; data mining; information retrieval; emergent social media processing problems.
This book provides a comprehensive tutorial on similarity operators. The authors systematically survey the set of similarity operators, primarily focusing on their semantics, while also touching upon mechanisms for processing them effectively. The book starts off by providing introductory material on similarity search systems, highlighting the central role of similarity operators in such systems. This is followed by a systematic categorized overview of the variety of similarity operators that have been proposed in literature over the last two decades, including advanced operators such as RkNN, Reverse k-Ranks, Skyline k-Groups and K-N-Match. Since indexing is a core technology in the practical implementation of similarity operators, various indexing mechanisms are summarized. Finally, current research challenges are outlined, so as to enable interested readers to identify potential directions for future investigations. In summary, this book offers a comprehensive overview of the field of similarity search operators, allowing readers to understand the area of similarity operators as it stands today, and in addition providing them with the background needed to understand recent novel approaches.
This book constitutes the refereed proceedings of the International Conference on Soft Computing in Data Science, SCDS 2016, held in Putrajaya, Malaysia, in September 2016. The 27 revised full papers presented were carefully reviewed and selected from 66 submissions. The papers are organized in topical sections on artificial neural networks; classification, clustering, visualization; fuzzy logic; information and sentiment analytics.
Learn how to develop powerful data analytics applications quickly for SQL Server database administrators and developers. Organizations will be able to sift data and derive the business intelligence needed to drive business decisions and profit. The addition of R to SQL Server 2016 places a powerful analytical processor into an environment most developers are already comfortable with - Visual Studio. This book walks even the newest of users through the creation process of a powerful R-language tool set for use in analyzing and reporting on your data. As a SQL Server database administrator or developer, it is sometimes difficult to stay on the bleeding edge of technology. Microsoft's addition of R to SQL Server 2016 is sure to be a game-changer, and the language will certainly become an integral part of future releases. R is in fact widely used today in statistical and related applications, and its use is only growing. Beginning SQL Server R Services helps you jump on board this important trend by providing good examples with detailed explanations of the WHY and not just the HOW. Walks you through setup and installation of SQL Server R Services. Explains the basics of working with R Tools for Visual Studio. Provides a road map to successfully creating custom R code. What You Will Learn Discover R's role in the SQL Server 2016 hierarchy. Manage the components needed to run SQL Server R Services code. Run R-language analytics and queries inside the database. Create analytic solutions that run across multiple datasets. Gain in-depth knowledge of the R language itself. Implement custom SQL Server R Services solutions. Who This Book Is For Any level of database administrator or developer, but specifically it's for those developers with the need to develop powerful data analytics applications quickly. Seasoned R developers will appreciate the book for its robust learning pattern, using visual aids in combination with properties explanations and scenarios. Beginning SQL Server R Services is the perfect "new hire" gift for new database developers in any organization.
Advances in hardware technology have lead to an ability to collect data with the use of a variety of sensor technologies. In particular sensor notes have become cheaper and more efficient, and have even been integrated into day-to-day devices of use, such as mobile phones. This has lead to a much larger scale of applicability and mining of sensor data sets. The human-centric aspect of sensor data has created tremendous opportunities in integrating social aspects of sensor data collection into the mining process. Managing and Mining Sensor Data is a contributed volume by prominent leaders in this field, targeting advanced-level students in computer science as a secondary text book or reference. Practitioners and researchers working in this field will also find this book useful.
The papers in this volume are the refereed papers presented at AI-2016, the Thirty-sixth SGAI International Conference on Innovative Techniques and Applications of Artificial Intelligence, held in Cambridge in December 2016 in both the technical and the application streams. They present new and innovative developments and applications, divided into technical stream sections on Knowledge Discovery and Data Mining, Sentiment Analysis and Recommendation, Machine Learning, AI Techniques, and Natural Language Processing, followed by application stream sections on AI for Medicine and Disability, Legal Liability and Finance, Telecoms and eLearning, and Genetic Algorithms in Action. The volume also includes the text of short papers presented as posters at the conference. This is the thirty-third volume in the Research and Development in Intelligent Systems series, which also incorporates the twenty-fourth volume in the Applications and Innovations in Intelligent Systems series. These series are essential reading for those who wish to keep up to date with developments in this important field.
This book constitutes the refereed proceedings of the 10th Metadata and Semantics Research Conference, MTSR 2016, held in Goettingen, Germany, in November 2016. The 26 full papers and 6 short papers presented were carefully reviewed and selected from 67 submissions. The papers are organized in several sessions and tracks: Digital Libraries, Information Retrieval, Linked and Social Data, Metadata and Semantics for Open Repositories, Research Information Systems and Data Infrastructures, Metadata and Semantics for Agriculture, Food and Environment, Metadata and Semantics for Cultural Collections and Applications, European and National Projects.
This work reviews the state of the art in SVM and perceptron classifiers. A Support Vector Machine (SVM) is easily the most popular tool for dealing with a variety of machine-learning tasks, including classification. SVMs are associated with maximizing the margin between two classes. The concerned optimization problem is a convex optimization guaranteeing a globally optimal solution. The weight vector associated with SVM is obtained by a linear combination of some of the boundary and noisy vectors. Further, when the data are not linearly separable, tuning the coefficient of the regularization term becomes crucial. Even though SVMs have popularized the kernel trick, in most of the practical applications that are high-dimensional, linear SVMs are popularly used. The text examines applications to social and information networks. The work also discusses another popular linear classifier, the perceptron, and compares its performance with that of the SVM in different application areas.>
Hyperspectral Image Fusion is the first text dedicated to the fusion techniques for such a huge volume of data consisting of a very large number of images. This monograph brings out recent advances in the research in the area of visualization of hyperspectral data. It provides a set of pixel-based fusion techniques, each of which is based on a different framework and has its own advantages and disadvantages. The techniques are presented with complete details so that practitioners can easily implement them. It is also demonstrated how one can select only a few specific bands to speed up the process of fusion by exploiting spatial correlation within successive bands of the hyperspectral data. While the techniques for fusion of hyperspectral images are being developed, it is also important to establish a framework for objective assessment of such techniques. This monograph has a dedicated chapter describing various fusion performance measures that are applicable to hyperspectral image fusion. This monograph also presents a notion of consistency of a fusion technique which can be used to verify the suitability and applicability of a technique for fusion of a very large number of images. This book will be a highly useful resource to the students, researchers, academicians and practitioners in the specific area of hyperspectral image fusion, as well as generic image fusion.
This book constitutes the refereed proceedings of the 17th International Conference on Engineering Applications of Neural Networks, EANN 2016, held in Aberdeen, UK, in September 2016. The 22 revised full papers and three short papers presented together with two tutorials were carefully reviewed and selected from 41 submissions. The papers are organized in topical sections on active learning and dynamic environments; semi-supervised modeling; classification applications; clustering applications; cyber-physical systems and cloud applications; time-series prediction; learning-algorithms.
This book constitutes the thoroughly refereed post-conference proceedings of the International Conference on Industrial IoT Technologies and Applications, IoT 2016, held in GuangZhou, China, in March 2016. The volume contains 26 papers carefully reviewed and selected from 55 submissions focusing on topics such as big data, cloud computing, Internet of Things (IoT).
This book explores how PPPM, clinical practice, and basic research could be best served by information technology (IT). A use-case was developed for hepatocellular carcinoma (HCC). The subject was approached with four interrelated tasks: (1) review of clinical practices relating to HCC; (2) propose an IT system relating to HCC, including clinical decision support and research needs; (3) determine how a clinical liver cancer center can contribute; and, (4) examine the enhancements and impact that the first three tasks will have on the management of HCC. An IT System for Personalized Medicine (ITS-PM) for HCC will provide the means to identify and determine the relative value of the wide number of variables, including clinical assessment of the patient -- functional status, liver function, degree of cirrhosis, and comorbidities; tumor biology, at a molecular, genetic and anatomic level; tumor burden and individual patient response; medical and operative treatments and their outcomes.
This book examines the field of parallel database management systems and illustrates the great variety of solutions based on a shared-storage or a shared-nothing architecture. Constantly dropping memory prices and the desire to operate with low-latency responses on large sets of data paved the way for main memory-based parallel database management systems. However, this area is currently dominated by the shared-nothing approach in order to preserve the in-memory performance advantage by processing data locally on each server. The main argument this book makes is that such an unilateral development will cease due to the combination of the following three trends: a) Today's network technology features remote direct memory access (RDMA) and narrows the performance gap between accessing main memory on a server and of a remote server to and even below a single order of magnitude. b) Modern storage systems scale gracefully, are elastic and provide high-availability. c) A modern storage system such as Stanford's RAM Cloud even keeps all data resident in the main memory. Exploiting these characteristics in the context of a main memory-based parallel database management system is desirable. The book demonstrates that the advent of RDMA-enabled network technology makes the creation of a parallel main memory DBMS based on a shared-storage approach feasible.
New technologies have enabled us to collect massive amounts of data in many fields. However, our pace of discovering useful information and knowledge from these data falls far behind our pace of collecting the data. Data Mining: Theories, Algorithms, and Examples introduces and explains a comprehensive set of data mining algorithms from various data mining fields. The book reviews theoretical rationales and procedural details of data mining algorithms, including those commonly found in the literature and those presenting considerable difficulty, using small data examples to explain and walk through the algorithms. The book covers a wide range of data mining algorithms, including those commonly found in data mining literature and those not fully covered in most of existing literature due to their considerable difficulty. The book presents a list of software packages that support the data mining algorithms, applications of the data mining algorithms with references, and exercises, along with the solutions manual and PowerPoint slides of lectures. The author takes a practical approach to data mining algorithms so that the data patterns produced can be fully interpreted. This approach enables students to understand theoretical and operational aspects of data mining algorithms and to manually execute the algorithms for a thorough understanding of the data patterns produced by them.
In education today, technology alone doesn't always lead to immediate success for students or institutions. In order to gauge the efficacy of educational technology, we need ways to measure the efficacy of educational practices in their own right. Through a better understanding of how learning takes place, we may work toward establishing best practices for students, educators, and institutions. These goals can be accomplished with learning analytics. "Learning Analytics: From Research to Practice "updates this emerging field with the latest in theories, findings, strategies, and tools from across education and technological disciplines. Guiding readers through preparation, design, and examples of implementation, this pioneering reference clarifies LA methods as not mere data collection but sophisticated, systems-based analysis with practical applicability inside the classroom and in the larger world. Case studies illustrate applications of LA throughout academic settings (e.g., intervention, advisement, technology design), and their resulting impact on pedagogy and learning. The goal is to bring greater efficiency and deeper engagement to individual students, learning communities, and educators, as chapters show diverse uses of learning analytics to: Enhance student and faculty performance.Improve student understanding of course material.Assess and attend to the needs of struggling learners.Improve accuracy in grading.Allow instructors to assess and develop their own strengths.Encourage more efficient use of resources at the institutional level. Researchers and practitioners in educational technology, IT, and the learning sciences will hail the information in "Learning Analytics: From Research to Practice "as a springboard to new levels of student, instructor, and institutional success.
This two volume set (CCIS 623 and 634) constitutes the refereed proceedings of the Second International Conference of Young Computer Scientists, Engineers and Educators, ICYCSEE 2016, held in Harbin, China, in August 2016. The 91 revised full papers presented were carefully reviewed and selected from 338 submissions. The papers are organized in topical sections on Research Track (Part I) and Education Track, Industry Track, and Demo Track (Part II) and cover a wide range of topics related to social computing, social media, social network analysis, social modeling, social recommendation, machine learning, data mining.
Abstraction is a fundamental mechanism underlying both human and artificial perception, representation of knowledge, reasoning and learning. This mechanism plays a crucial role in many disciplines, notably Computer Programming, Natural and Artificial Vision, Complex Systems, Artificial Intelligence and Machine Learning, Art, and Cognitive Sciences. This book first provides the reader with an overview of the notions of abstraction proposed in various disciplines by comparing both commonalities and differences. After discussing the characterizing properties of abstraction, a formal model, the KRA model, is presented to capture them. This model makes the notion of abstraction easily applicable by means of the introduction of a set of abstraction operators and abstraction patterns, reusable across different domains and applications. It is the impact of abstraction in Artificial Intelligence, Complex Systems and Machine Learning which creates the core of the book. A general framework, based on the KRA model, is presented, and its pragmatic power is illustrated with three case studies: Model-based diagnosis, Cartographic Generalization, and learning Hierarchical Hidden Markov Models.
The LNCS journal Transactions on Large-Scale Data- and Knowledge-Centered Systems focuses on data management, knowledge discovery, and knowledge processing, which are core and hot topics in computer science. Since the 1990s, the Internet has become the main driving force behind application development in all domains. An increase in the demand for resource sharing across different sites connected through networks has led to an evolution of data- and knowledge-management systems from centralized systems to decentralized systems enabling large-scale distributed applications providing high scalability. Current decentralized systems still focus on data and knowledge as their main resource. Feasibility of these systems relies basically on P2P (peer-to-peer) techniques and the support of agent systems with scaling and decentralized control. Synergy between grids, P2P systems, and agent technologies is the key to data- and knowledge-centered systems in large-scale environments.This volume, the 26th issue of Transactions on Large-Scale Data- and Knowledge-Centered Systems, focuses on Data Warehousing and Knowledge Discovery from Big Data, and contains extended and revised versions of four papers selected as the best papers from the 16th International Conference on Data Warehousing and Knowledge Discovery (DaWaK 2014), held in Munich, Germany, during September 1-5, 2014. The papers focus on data cube computation, the construction and analysis of a data warehouse in the context of cancer epidemiology, pattern mining algorithms, and frequent item-set border approximation.
This book constitutes the thoroughly refereed proceedings of the 9th Russian Summer School on Information Retrieval, RuSSIR 2015, held in Saint Petersburg, Russia, in August 2015. The volume includes 5 tutorial papers, summarizing lectures given at the event, and 6 revised papers from the school participants. The papers focus on various aspects of information retrieval.
This proceedings set contains 85 selected full papers presented at the 3rd International Conference on Modelling, Computation and Optimization in Information Systems and Management Sciences - MCO 2015, held on May 11-13, 2015 at Lorraine University, France. The present part I of the 2 volume set includes articles devoted to Combinatorial optimization and applications, DC programming and DCA: thirty years of Developments, Dynamic Optimization, Modelling and Optimization in financial engineering, Multiobjective programming, Numerical Optimization, Spline Approximation and Optimization, as well as Variational Principles and Applications.
Michael Nofer examines whether and to what extent Social Media can be used to predict stock returns. Market-relevant information is available on various platforms on the Internet, which largely consist of user generated content. For instance, emotions can be extracted in order to identify the investors' risk appetite and in turn the willingness to invest in stocks. Discussion forums also provide an opportunity to identify opinions on certain companies. Taking Social Media platforms as examples, the author examines the forecasting quality of user generated content on the Internet.
This book addresses the need for a unified framework describing how soft computing and machine learning techniques can be judiciously formulated and used in building efficient pattern recognition models. The text reviews both established and cutting-edge research, providing a careful balance of theory, algorithms, and applications, with a particular emphasis given to applications in computational biology and bioinformatics. Features: integrates different soft computing and machine learning methodologies with pattern recognition tasks; discusses in detail the integration of different techniques for handling uncertainties in decision-making and efficiently mining large biological datasets; presents a particular emphasis on real-life applications, such as microarray expression datasets and magnetic resonance images; includes numerous examples and experimental results to support the theoretical concepts described; concludes each chapter with directions for future research and a comprehensive bibliography. |
You may like...
New Opportunities for Sentiment Analysis…
Aakanksha Sharaff, G. R. Sinha, …
Hardcover
R6,648
Discovery Miles 66 480
The Data and Analytics Playbook - Proven…
Lowell Fryman, Gregory Lampshire, …
Paperback
R1,200
Discovery Miles 12 000
Transforming Businesses With Bitcoin…
Dharmendra Singh Rajput, Ramjeevan Singh Thakur, …
Hardcover
R5,938
Discovery Miles 59 380
|