![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > Applications of computing > Databases > Data mining
Intelligent Data Mining and Analysis in Power and Energy Systems A hands-on and current review of data mining and analysis and their applications to power and energy systems In Intelligent Data Mining and Analysis in Power and Energy Systems: Models and Applications for Smarter Efficient Power Systems, the editors assemble a team of distinguished engineers to deliver a practical and incisive review of cutting-edge information on data mining and intelligent data analysis models as they relate to power and energy systems. You'll find accessible descriptions of state-of-the-art advances in intelligent data mining and analysis and see how they drive innovation and evolution in the development of new technologies. The book combines perspectives from authors distributed around the world with expertise gained in academia and industry. It facilitates review work and identification of critical points in the research and offers insightful commentary on likely future developments in the field. It also provides: A thorough introduction to data mining and analysis, including the foundations of data preparation and a review of various analysis models and methods In-depth explorations of clustering, classification, and forecasting Intensive discussions of machine learning applications in power and energy systems Perfect for power and energy systems designers, planners, operators, and consultants, Intelligent Data Mining and Analysis in Power and Energy Systems will also earn a place in the libraries of software developers, researchers, and students with an interest in data mining and analysis problems.
Introducing the fundamental concepts and algorithms of data mining Introduction to Data Mining, 2nd Edition, gives a comprehensive overview of the background and general themes of data mining and is designed to be useful to students, instructors, researchers, and professionals. Presented in a clear and accessible way, the book outlines fundamental concepts and algorithms for each topic, thus providing the reader with the necessary background for the application of data mining to real problems. The text helps readers understand the nuances of the subject, and includes important sections on classification, association analysis, and cluster analysis. This edition improves on the first iteration of the book, published over a decade ago, by addressing the significant changes in the industry as a result of advanced technology and data growth.
This book of peer-reviewed contributions presents the latest findings in classification, statistical learning, data analysis and related areas, including supervised and unsupervised classification, clustering, statistical analysis of mixed-type data, big data analysis, statistical modeling, graphical models and social networks. It covers both methodological aspects as well as applications to a wide range of fields such as economics, architecture, medicine, data management, consumer behavior and the gender gap. In addition, it describes the basic features of the software behind the data analysis results, and provides links to the corresponding codes and data sets where necessary. This book is intended for researchers and practitioners who are interested in the latest developments and applications in the field of data analysis and classification. It gathers selected and peer-reviewed contributions presented at the 11th Scientific Meeting of the Classification and Data Analysis Group of the Italian Statistical Society (CLADAG 2017), held in Milan, Italy, on September 13-15, 2017.
Modern biological databases comprise not only data, but also sophisticated query facilities and bioinformatics data analysis tools. This book provides an exploration through the world of Bioinformatics Database Systems. The book summarizes the popular and innovative bioinformatics repositories currently available, including popular primary genetic and protein sequence databases, phylogenetic databases, structure and pathway databases, microarray databases and boutique databases. It also explores the data quality and information integration issues currently involved with managing bioinformatics databases, including data quality issues that have been observed, and efforts in the data cleaning field. Biological data integration issues are also covered in-depth, and the book demonstrates how data integration can create new repositories to address the needs of the biological communities. It also presents typical data integration architectures employed in current bioinformatics databases. The latter part of the book covers biological data mining and biological data processing approaches using cloud-based technologies. General data mining approaches are discussed, as well as specific data mining methodologies that have been successfully deployed in biological data mining applications. Two biological data mining case studies are also included to illustrate how data, query, and analysis methods are integrated into user-friendly systems. Aimed at researchers and developers of bioinformatics database systems, the book is also useful as a supplementary textbook for a one-semester upper-level undergraduate course, or an introductory graduate bioinformatics course.
This book presents the results of discussions and presentation from the latest ISDT event (2014) which was dedicated to the 94th birthday anniversary of Prof. Lotfi A. Zade, father of Fuzzy logic. The book consists of three main chapters, namely: Chapter 1: Integrated Systems Design Chapter 2: Knowledge, Competence and Business Process Management Chapter 3: Integrated Systems Technologies Each article presents novel and scientific research results with respect to the target goal of improving our common understanding of KT integration.
This book presents practical development experiences in different areas of data analysis and pattern recognition, focusing on soft computing technologies, clustering and classification algorithms, rough set and fuzzy set theory, evolutionary computations, neural science and neural network systems, image processing, combinatorial pattern matching, social network analysis, audio and video data analysis, data mining in dynamic environments, bioinformatics, hybrid computing, big data analytics and deep learning. It also provides innovative solutions to the challenges in these areas and discusses recent developments.
This book constitutes the refereed proceedings of the 20th International Conference on Data Analytics and Management in Data Intensive Domains, DAMDID/RCDL 2018, held in Moscow, Russia, in October 2018.The 9 revised full papers presented together with three invited papers were carefully reviewed and selected from 54 submissions. The papers are organized in the following topical sections: FAIR data infrastructures, interoperability and reuse; knowledge representation; data models; data analysis in astronomy; text search and processing; distributed computing; information extraction from text.
This two-volume set LNCS 11625 and 11626 constitutes the refereed proceedings of the 20th International Conference on Artificial Intelligence in Education, AIED 2019, held in Chicago, IL, USA, in June 2019. The 45 full papers presented together with 41 short, 10 doctoral consortium, 6 industry, and 10 workshop papers were carefully reviewed and selected from 177 submissions. AIED 2019 solicits empirical and theoretical papers particularly in the following lines of research and application: Intelligent and interactive technologies in an educational context; Modelling and representation; Models of teaching and learning; Learning contexts and informal learning; Evaluation; Innovative applications; Intelligent techniques to support disadvantaged schools and students, inequity and inequality in education.
This two-volume set LNCS 11554 and 11555 constitutes the refereed proceedings of the 16th International Symposium on Neural Networks, ISNN 2019, held in Moscow, Russia, in July 2019. The 111 papers presented in the two volumes were carefully reviewed and selected from numerous submissions. The papers were organized in topical sections named: Learning System, Graph Model, and Adversarial Learning; Time Series Analysis, Dynamic Prediction, and Uncertain Estimation; Model Optimization, Bayesian Learning, and Clustering; Game Theory, Stability Analysis, and Control Method; Signal Processing, Industrial Application, and Data Generation; Image Recognition, Scene Understanding, and Video Analysis; Bio-signal, Biomedical Engineering, and Hardware.
Historically, the term quality was used to measure performance in the context of products, processes and systems. With rapid growth in data and its usage, data quality is becoming quite important. It is important to connect these two aspects of quality to ensure better performance. This book provides a strong connection between the concepts in data science and process engineering that is necessary to ensure better quality levels and takes you through a systematic approach to measure holistic quality with several case studies. Features: Integrates data science, analytics and process engineering concepts Discusses how to create value by considering data, analytics and processes Examines metrics management technique that will help evaluate performance levels of processes, systems and models, including AI and machine learning approaches Reviews a structured approach for analytics execution
This book constitutes the refereed proceedings of the 15th World Congress on Services, SERVICES 2019, held as part of the Services Conference Federation, SCF 2019, in San Diego, USA, in June 2019. The 11 full papers and 2 short papers presented were carefully reviewed and selected from 14 submissions. The papers cover topics in the field of software engineering foundations and applications with a focus on novel approaches for engineering requirements, design and architectures, testing, maintenance and evolution, model-driven development, software processes, metrics, quality assurance and new software economics models, search-based software engineering, benefiting day-to-day services sectors and derived through experiences, with appreciation to scale, pragmatism, transparency, compliance and/or dependability.
This book constitutes the refereed proceedings of the 33rd Annual IFIP WG 11.3 Conference on Data and Applications Security and Privacy, DBSec 2019, held in Charleston, SC, USA, in July 2018. The 21 full papers presented were carefully reviewed and selected from 52 submissions. The papers present high-quality original research from academia, industry, and government on theoretical and practical aspects of information security. They are organized in topical sections on attacks, mobile and Web security, privacy, security protocol practices, distributed systems, source code security, and malware.
The systematic description starts with basic theory and applications of different kinds of data structures, including storage structures and models. It also explores on data processing methods such as sorting, index and search technologies. Due to its numerous exercises the book is a helpful reference for graduate students, lecturers.
This two-volume set LNCS 11554 and 11555 constitutes the refereed proceedings of the 16th International Symposium on Neural Networks, ISNN 2019, held in Moscow, Russia, in July 2019. The 111 papers presented in the two volumes were carefully reviewed and selected from numerous submissions. The papers were organized in topical sections named: Learning System, Graph Model, and Adversarial Learning; Time Series Analysis, Dynamic Prediction, and Uncertain Estimation; Model Optimization, Bayesian Learning, and Clustering; Game Theory, Stability Analysis, and Control Method; Signal Processing, Industrial Application, and Data Generation; Image Recognition, Scene Understanding, and Video Analysis; Bio-signal, Biomedical Engineering, and Hardware.
Manage and Automate Data Analysis with Pandas in Python Today, analysts must manage data characterized by extraordinary variety, velocity, and volume. Using the open source Pandas library, you can use Python to rapidly automate and perform virtually any data analysis task, no matter how large or complex. Pandas can help you ensure the veracity of your data, visualize it for effective decision-making, and reliably reproduce analyses across multiple data sets. Pandas for Everyone, 2nd Edition, brings together practical knowledge and insight for solving real problems with Pandas, even if you're new to Python data analysis. Daniel Y. Chen introduces key concepts through simple but practical examples, incrementally building on them to solve more difficult, real-world data science problems such as using regularization to prevent data overfitting, or when to use unsupervised machine learning methods to find the underlying structure in a data set. New features to the second edition include: Extended coverage of plotting and the seaborn data visualization library Expanded examples and resources Updated Python 3.9 code and packages coverage, including statsmodels and scikit-learn libraries Online bonus material on geopandas, Dask, and creating interactive graphics with Altair Chen gives you a jumpstart on using Pandas with a realistic data set and covers combining data sets, handling missing data, and structuring data sets for easier analysis and visualization. He demonstrates powerful data cleaning techniques, from basic string manipulation to applying functions simultaneously across dataframes. Once your data is ready, Chen guides you through fitting models for prediction, clustering, inference, and exploration. He provides tips on performance and scalability and introduces you to the wider Python data analysis ecosystem. Work with DataFrames and Series, and import or export data Create plots with matplotlib, seaborn, and pandas Combine data sets and handle missing data Reshape, tidy, and clean data sets so they're easier to work with Convert data types and manipulate text strings Apply functions to scale data manipulations Aggregate, transform, and filter large data sets with groupby Leverage Pandas' advanced date and time capabilities Fit linear models using statsmodels and scikit-learn libraries Use generalized linear modeling to fit models with different response variables Compare multiple models to select the "best" one Regularize to overcome overfitting and improve performance Use clustering in unsupervised machine learning
The two-volume set LNBIP 353 and 354 constitutes the proceedings of the 22nd International Conference on Business Information Systems, BIS 2019, held in Seville, Spain, in June 2019. The theme of the BIS 2019 was "Data Science for Business Information Systems", inspiring researchers to share theoretical and practical knowledge of the different aspects related to Data Science in enterprises. The 67 papers presented in these proceedings were carefully reviewed and selected from 223 submissions. The contributions were organized in topical sections as follows: Part I: Big Data and Data Science; Artificial Intelligence; ICT Project Management; and Smart Infrastructure. Part II: Social Media and Web-based Systems; and Applications, Evaluations and Experiences.
DEEP LEARNING A concise and practical exploration of key topics and applications in data science In Deep Learning: From Big Data to Artificial Intelligence with R, expert researcher Dr. Stephane Tuffery delivers an insightful discussion of the applications of deep learning and big data that focuses on practical instructions on various software tools and deep learning methods relying on three major libraries: MXNet, PyTorch, and Keras-TensorFlow. In the book, numerous, up-to-date examples are combined with key topics relevant to modern data scientists, including processing optimization, neural network applications, natural language processing, and image recognition. This is a thoroughly revised and updated edition of a book originally released in French, with new examples and methods included throughout. Classroom-tested and intuitively organized, Deep Learning: From Big Data to Artificial Intelligence with R offers complimentary access to a companion website that provides R and Python source code for the examples offered in the book. Readers will also find: A thorough introduction to practical deep learning techniques with explanations and examples for various programming libraries Comprehensive explorations of a variety of applications for deep learning, including image recognition and natural language processing Discussions of the theory of deep learning, neural networks, and artificial intelligence linked to concrete techniques and strategies commonly used to solve real-world problems Perfect for graduate students studying data science, big data, deep learning, and artificial intelligence, Deep Learning: From Big Data to Artificial Intelligence with R will also earn a place in the libraries of data science researchers and practicing data scientists.
The field of data mining lies at the confluence of predictive analytics, statistical analysis, and business intelligence. Due to the ever-increasing complexity and size of data sets and the wide range of applications in computer science, business, and health care, the process of discovering knowledge in data is more relevant than ever before. This book provides the tools needed to thrive in today s big data world. The author demonstrates how to leverage a company s existing databases to increase profits and market share, and carefully explains the most current data science methods and techniques. The reader will learn data mining by doing data mining . By adding chapters on data modelling preparation, imputation of missing data, and multivariate statistical analysis, Discovering Knowledge in Data, Second Edition remains the eminent reference on data mining . * The second edition of a highly praised, successful reference on data mining, with thorough coverage of big data applications, predictive analytics, and statistical analysis. * Includes new chapters on Multivariate Statistics, Preparing to Model the Data, and Imputation of Missing Data, and an Appendix on Data Summarization and Visualization * Offers extensive coverage of the R statistical programming language * Contains 280 end-of-chapter exercises * Includes a companion website for university instructors who adopt the book
The book constitutes selected high quality papers presented in International Conference on Computing, Power and Communication Technologies 2018 (GUCON 2018) organised by Galgotias University, India, in September 2018. It discusses issues in electrical, computer and electronics engineering and technologies. The selected papers are organised into three sections - cloud computing and computer networks; data mining and big data analysis; and bioinformatics and machine learning. In-depth discussions on various issues under these topics provides an interesting compilation for researchers, engineers, and students.
The two-volume set LNAI 11288 and 11289 constitutes the proceedings of the 17th Mexican International Conference on Artificial Intelligence, MICAI 2018, held in Guadalajara, Mexico, in October 2018. The total of 62 papers presented in these two volumes was carefully reviewed and selected from 149 submissions. The contributions are organized in topical as follows: Part I: evolutionary and nature-inspired intelligence; machine learning; fuzzy logic and uncertainty management. Part II: knowledge representation, reasoning, and optimization; natural language processing; and robotics and computer vision.
This book features research papers presented at the International Conference on Emerging Technologies in Data Mining and Information Security (IEMIS 2018) held at the University of Engineering & Management, Kolkata, India, on February 23-25, 2018. It comprises high-quality research work by academicians and industrial experts in the field of computing and communication, including full-length papers, research-in-progress papers, and case studies related to all the areas of data mining, machine learning, Internet of Things (IoT) and information security.
This book constitutes the thoroughly refereed post-conference proceedings of the Third International Conference on Advances in Data Science, ICIIT 2018, held in Chennai, India, in December 2018. The 11 full papers along with 4 short papers presented were carefully reviewed and selected from 74 submissions.The papers are organized in topical sections on data science foundations, data management and processing technologies, data analytics and its applications.
The book includes high-quality research papers presented at the International Conference on Innovative Computing and Communication (ICICC 2018), which was held at the Guru Nanak Institute of Management (GNIM), Delhi, India on 5-6 May 2018. Introducing the innovative works of scientists, professors, research scholars, students and industrial experts in the field of computing and communication, the book promotes the transformation of fundamental research into institutional and industrialized research and the conversion of applied exploration into real-time applications. |
You may like...
Predictive Filtering for Microsatellite…
Lu Cao, Xiaoqian Chen, …
Paperback
R2,819
Discovery Miles 28 190
Next-Generation Applications and…
Filipe Portela, Ricardo Queiros
Hardcover
R6,648
Discovery Miles 66 480
|