Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Astronomy, space & time > General
This is the story of the astronomer Milton La Salle Humason, whose career was integral to developing our understanding of stellar and universal evolution and who helped to build the analytical basis for the work of such notable astronomers and astrophysicists as Paul Merrill, Walter Adams, Alfred Joy, Frederick Seares, Fritz Zwicky, Walter Baade and Edwin Hubble. Humason's unlikely story began on the shores of the Mississippi River in Winona, Minnesota, in 1891 and led to the foot of Mount Wilson outside Los Angeles, California, twelve years later. It is there where he first attended summer camp in 1903 and was captivated by its surroundings. The mountain would become the backdrop for his life and career over the next six decades as he helped first build George Ellery Hale's observatory on the summit and then rose to become one of that institution's leading figures through the first half of the twentieth century. The story chronicles Humason's life on Mount Wilson, from his first trip to the mountain to his days as a muleskinner, leading teams of mules hauling supplies to the summit during the construction of the observatory, and follows him through his extraordinary career in spectroscopy, working beside Edwin Hubble as the two helped to reconstruct our concept of the universe. A patient, knowledgeable and persistent observer, Humason was later awarded an honorary doctorate for his work, despite having no formal education beyond the eighth grade. His skill at the telescope is legendary. During his career he photographed the spectra of stars, galaxies and other objects many thousands of times fainter than can be seen with the naked eye and pushed the boundary of the known universe deeper into space than any before him. His work, which included assisting in the formulation of Hubble's Law of redshifts, helped to set the field of cosmology solidly on its foundation. Milton Humason was one of the most charismatic characters in science during the first half of the 20th century. Uneducated, streetwise, moonshining, roguish, humble and thoroughly down to earth, he rose by sheer chance, innate ability and incredible will to become the leading deep space observer of his day. "The Renaissance man of Mount Wilson," as Harlow Shapley once referred to him, Humason's extraordinary life reminds us that passion and purpose may find us at any moment.
In a series of illuminating lectures, Joseph A. Seiss presents a clear picture of astronomical occurrences and inspirations to be found in the Biblical New Testament and Gospels. A superbly insightful Bible commentary, this book contains seventeen lectures, each of which focuses upon a specific astronomical occurrence in the New Testament. Events which draw specific influence from the constellations of the stars are charted, with each star sign identified as important to separate events depicted in the scriptures of the gospels. The nativity of Jesus Christ, wherein the Star of Bethlehem appears to the three wise men, is perhaps the most obvious incident of the astronomical. However, Seiss demonstrates that the stars above are richly significant and play a role in many of the most famous tales of the Bible. For example, when Seiss recounts the story of St. Peter's fishing, he compares the sign of Pisces, which was already widely known in the Biblical era.
This thesis describes the essential features of Moon-plasma interactions with a particular emphasis on the Earth's magnetotail plasma regime from both observational and theoretical standpoints. The Moon lacks a dense atmosphere as well as a strong intrinsic magnetic field. As a result, its interactions with the ambient plasma are drastically different from solar-wind interactions with magnetized planets such as Earth. The Moon encounters a wide range of plasma regime from the relatively dense, cold, supersonic solar-wind plasma to the low-density, hot, subsonic plasma in the geomagnetic tail. In this book, the author presents a series of new observations from recent lunar missions (i.e., Kaguya, ARTEMIS, and Chandrayaan-1), demonstrating the importance of the electron gyro-scale dynamics, plasma of lunar origin, and hot plasma interactions with lunar magnetic anomalies. The similarity and difference between the Moon-plasma interactions in the geomagnetic tail and those in the solar wind are discussed throughout the thesis. The basic knowledge presented in this book can be applied to plasma interactions with airless bodies throughout the solar system and beyond.
This book is a sequel to Heaven and Earth in Ancient Greek Cosmology (Springer 2011). With the help of many pictures, the reader is introduced into the way of thinking of ancient believers in a flat earth. The first part offers new interpretations of several Presocratic cosmologists and a critical discussion of Aristotle's proofs that the earth is spherical. The second part explains and discusses the ancient Chinese system called gai tian. The last chapter shows that, inadvertently, ancient arguments and ideas return in the curious modern flat earth cosmologies.
This book provides a comprehensive introduction to X-ray and gamma-ray astronomy. The first part discusses the basic theoretical and observational topics related to black hole astrophysics; the optics and the detectors employed in X-ray and gamma-ray astronomy; and past, present, and future X-ray and gamma-ray missions. The second part then describes data reduction and analysis, the statistics used in X-ray and gamma-ray astronomy, and demonstrates how to write a successful proposal and a scientific paper. Data reduction in connection with specific X-ray and gamma-ray missions is covered in the appendices. Presenting the state of the art in X-ray and gamma-ray astronomy, this is both a valuable textbook for students and an important reference resource for researchers in the field.
The large telescope at Meudon has become legendary. When it was conceived, after 1870, astronomy as a whole was limited to visual observation. Knowledge of the sky was limited to what one could see, assisted only by optical means. The large telescopes produced at this time produced larger images, permitting close-up views: the Meudon telescope was able to accomplish this perfectly. At Meudon, which became the Mecca of visual observation, the major planets were examined in a way that no other telescope had previously been able to. The telescope monitored the state of their atmospheres and mapped the appearance of their surfaces. Through the telescope, one could obtain photographs showing the nuclei of comets, revealing their very small size, and by using an eyepiece one could measure the separation of double stars. With a marvellous little instrument, the polarimeter, the nature of clouds in planetary atmospheres has been determined, and the type of surface material identified. Many more results were obtained, while photography, universally adopted, revolutionized other knowledge about the world. The sensitive emulsion, combined with large aperture reflecting telescopes, revealed the deepness and richness of the cosmos. The vast telescope of Meudon, which was the largest refracting telescope in Europe, became a legendary instrument and was symbolic of a new way to practice astronomy. Audouin Dollfus, a renowned astronomer, describes the great years of the Meudon telescope. He gives us the entire story of this instrument, from the birth of the concept that drove Jules Janssen at the end of the nineteenth century, to the idea that French astronomy could provide an outstanding telescope which would approach the limits of technical and industrial resources. The telescope remained unchanged until 2006, when the first steps toward restoration and public reopening were taken.
A physicist and an inventor, Jules Janssen (1824-1907) devoted his life to astronomical research. He spent many years traveling around the world to observe total Solar eclipses, demonstrating that a new era of science had just come thanks to the use of both spectroscopy and photography, and persuading the French Government of the necessity of founding a new observatory near Paris. He became its director in 1875. There, at Meudon, he began routine photographic recordings of the Sun surface and had a big refractor and a big reflector built. Meanwhile, he also succeeded in building an Observatory at the summit of Mont-Blanc. The story of this untiring and stubborn globe-trotter is enriched by extracts of the unpublished correspondence with his wife. One can thus understand why Henriette often complained of the solitude in which she was left by her peripatetic husband: "There are men who leave their wives for mistresses; you do it for journeys!" ... Basking in the glow of his success, Janssen was able to undertake the construction of the great astrophysical observatory of which he had dreamed. It was at Meudon that he had it built.
The invention of the semiconductor laser along with silica glass fiber has enabled an incredible revolution in global communication infrastructure of direct benefit to all. Development of devices and system concepts that exploit the same fundamental light-matter interaction continues. Researchers and technologists are pursuing a broad range of emerging applications, everything from automobile collision avoidance to secure quantum key distribution. This book sets out to summarize key aspects of semiconductor laser device physics and principles of laser operation. It provides a convenient reference and essential knowledge to be understood before exploring more sophisticated device concepts. The contents serve as a foundation for scientists and engineers, without the need to invest in specialized detailed study. Supplementary material in the form of MATLAB is available for numerically generated figures.
How does it happen that billions of stars can cooperate to produce the beautiful spirals that characterize so many galaxies, including ours? This book reviews the history behind the discovery of spiral galaxies and the problems faced when trying to explain the existence of spiral structure within them. In the book, subjects such as galaxy morphology and structure are addressed as well as several models for spiral structure. The evidence in favor or against these models is discussed. The book ends by discussing how spiral structure can be used as a proxy for other properties of spiral galaxies, such as their dark matter content and their central supermassive black hole masses, and why this is important.
"Space Commerce" relates the story of private enterprise's unsteady rise to prominence as a major influence on world space policy and research. The first space race proved the technological and military prowess of the two superpowers; but since the 1970s that contest has been supplanted by a multinational struggle to command the commercial opportunities of space. The commercial space age was born in 1965 when Early Bird, the first commercial communications satellite, went into orbit. With characteristic ingenuity, American industrialists began to dream of garnering billions of dollars per year from space-based products and services. In the microgravity of space, they hoped, hitherto unavailable drugs could be produced that would revolutionize medicine; in the high vacuum of space, crystals of extreme purity could be grown in orbital laboratories, both for biological research and for application in the manufacture of advanced microcircuits. In this book John McLucas covers the broad sweep of space commerce, both the vision and the reality: the construction of communications satellites and their ground control stations; the sale and leasing of communications services; remote sensing and measurement of earth's processes; navigation by satellites, serving ships, airplanes, and automobiles; the design and deployment of space laboratories for scientific research and product development; and life science experiments to determine the effects of space habitation on humans. Drawing on his considerable expertise, McLucas brings a sober perspective to his assessment of the technological accomplishments as well as the challenges still faced by industry in space. He incorporates into his discussion an illuminating analysis of the economic and political impact of space commerce and its rapidly changing international character.
This book discusses key theoretical aspects concerning the formation of the solar wind: the most essential building block in the heliosphere, in which planets orbit. To understand the influence of solar activity on planetary magnetospheres and atmospheres, we need to first understand the origin of the solar wind, which is still under debate. This book presents the outcomes of state-of-the-art numerical simulations of solar wind acceleration, including the first three-dimensional simulation of the turbulence-driven solar wind model. One of the book's goals is to include compressional effects in the dynamics of solar wind turbulence; accordingly, it discusses parametric decay instability in detail. Several key aspects that are relevant to the Parker Solar Probe observations are also discussed. Given its scope, the book plays a key role in bridging the gap between the theory of magnetohydrodynamic turbulence and current/future in-situ observations of the solar wind. This book is based on the Ph.D. thesis by the author, which won the 2019 International Astronomical Union Division E Ph.D. prize.
This book focuses on the robustness analysis of high accuracy surface modeling method (HASM) to yield good performance of it. Understanding the sensitivity and uncertainty is important in model applications. The book aims to advance an integral framework for assessing model error that can demonstrate robustness across sets of possible controls, variable definitions, standard error, algorithm structure, and functional forms. It is an essential reference to the most promising numerical models. In areas where there is less certainty about models, but also high expectations of transparency, robustness analysis should aspire to be as broad as possible. This book also contains a chapter at the end featuring applications in climate simulation illustrating different implementations of HASM in surface modeling. The book is helpful for people involved in geographical information science, ecological informatics, geography, earth observation, and planetary surface modeling.
The zodiac was first clearly defined by the Babylonians some 2500 years ago, but until recently the basis of this original definition remained unknown. This zodiac of the Babylonians, known as the sidereal zodiac because it is specified in direct relation to the stars (Latin sideris, 'starry'), was used for centuries throughout the ancient world, all the way to India, and must be distinguished from the tropical zodiac in widespread use by astrologers in the West today, which was introduced only in the middle of the second century A.D. by the Greek astronomer Claudius Ptolemy. Such was Ptolemy's influence, however, that the tropical zodiac gained prominence and, except for its survival (in a variant form) in India, knowledge of the sidereal zodiac was lost. In this thrilling study of the history of the zodiac, first submitted in 2004 as his Ph.D. thesis, Robert Powell rescues the the sidereal zodiac from the dusts of time, tracing it back to the Babylonians in the sixth/fifth centuries B.C. The implications of this discovery-among them the restitution of the sideral zodiac to its rightful place at the heart of astrology-are immense, they key point being that the signs of the sidereal zodiac, each thirty degrees long, coincide closely with the twelve astronomical constellations of the same name, whereas the signs of the tropical zodiac, since they are defined in relation to the vernal point, now have no direct relationship to the corresponding zodiacal constellations, owing to the precession of the equinoxes.This revolutionary history of the zodiac includes chapters on the Egyptian decans and the Hindu nakshatras, showing how these sidereal divisions, which originated in Egypt and India, are related to the original Babylonian zodiac. It also sheds light on the controversy surrounding the 'zodiac question' (tropical vs. sidereal), illuminating the history of the tropical zodiac-showing that originally it was not a zodiac at all, but a calendar for describing the course of the seasons This book, the fruit of thirty years of research, is intended not only for scholars but for general readers as well, and offers the clearest and most comprehensive study of the history of the zodiac yet published.
Nature is characterized by a number of physical laws and fundamental dimensionless couplings. These determine the properties of our physical universe, from the size of atoms, cells and mountains to the ultimate fate of the universe as a whole. Yet it is rather remarkable how little we know about them. The constancy of physical laws is one of the cornerstones of the scientific research method, but for fundamental couplings this is an assumption with no other justification than a historical assumption. There is no 'theory of constants' describing their role in the underlying theories and how they relate to one another or how many of them are truly fundamental. Studying the behaviour of these quantities throughout the history of the universe is an effective way to probe fundamental physics. This explains why the ESA and ESO include varying fundamental constants among their key science drivers for the next generation of facilities. This symposium discussed the state-of-the-art in the field, as well as the key developments anticipated for the coming years.
..".The Multiversal book series is equally unique, providing book-length extensions of the lectures with enough additional depth for those who truly want to explore these fields, while also providing thekind of clarity that is appropriate for interested lay people to grasp the general principles involved." - Lawrence M. Krauss Cosmic Update Covers: A novel approach to uncover the dark faces of the Standard Model of cosmology.The possibility that Dark Energy and Dark Matter are manifestations of the inhomogeneous geometry of our Universe.On the history of cosmological model building and the general architecture of cosmological modes.Illustrations on the Large Scale Structure of the Universe.A new perspective on the classical static Einstein Cosmos.Global properties of World Models including their Topology.The Arrow of Time in a Universe with a Positive Cosmological Constant.Exploring the consequences of a fundamental Cosmological Constant for our Universe. Exploring why the current observed acceleration of the Universe may not be its final destiny.Demonstrating that nature forbids the existence of a pure Cosmological Constant.Our current understanding of the long term (in time scales that greatly exceed the current age of the Universe) future of the Universe.The long term fate and eventual destruction of the astrophysical objects that populate the universe --including clusters, galaxies, stars, planets, and black holes. The material is presented in a layperson-friendly language followed by addition technical sections that explain the basic equations and principles. This feature is very attractive to readers who want to learn more about the theories involved beyond the basic description. "Multiversal Journeys is a trademark of Farzad Nekoogar and Multiversal Journeys, a 501 (c) (3) nonprofit organization.""
This book is the result of a working group sponsored by ISSI in
Bern, which was initially created to study possible ways to
calibrate a Far Ultraviolet (FUV) instrument after launch. In most
cases, ultraviolet instruments are well calibrated on the ground,
but unfortunately, optics and detectors in the FUV are very
sensitive to contaminants and it is very challenging to prevent
contamination before and during the test and launch sequences of a
space mission. Therefore, ground calibrations need to be confirmed
after launch and it is necessary to keep track of the temporal
evolution of the sensitivity of the instrument during the mission.
|
You may like...
Proceedings of the American Association…
Assoc for the Advancement of Science
Hardcover
R639
Discovery Miles 6 390
The American Ephemeris and Nautical…
United States Naval Observatory
Paperback
R561
Discovery Miles 5 610
|