![]() |
![]() |
Your cart is empty |
||
Books > Earth & environment > Earth sciences > General
This invaluable volume set of Advances in Geosciences continues the excellent tradition of the Asia-Oceania scientific community in providing the most up-to-date research results on a wide range of geosciences and environmental science. The information is vital to the understanding of the effects of climate change and extreme weather on the most populated regions and fastest moving economies in the world. Besides, these volumes also highlight original papers from many prestigious research institutions which are conducting cutting-edge studies in atmospheric physics, hydrogical science and water resource, ocean science and coastal study, planetary exploration and solar system science, seismology, tsunamis, upper atmospheric physics and space science.
Part of the Fossils and Strata Series The publication, Trace Fossils in Evolutionary Palaeocology, details the session proceedings on Trace Fossils at the First International Palaeontological Congress in Sydney, Australia, held in 2002.
Classroom tested and the result of over 30 years of teaching and research, this textbook is an invaluable tool for undergraduate and graduate data analysis courses in environmental sciences and engineering. It is also a useful reference on modern digital data analysis for the extensive and growing community of Earth scientists and engineers. Basic Environmental Data Analysis for Scientists and Engineers introduces practical concepts of modern digital data analysis and graphics, including numerical/graphical calculus, measurement units and dimensional analysis, error propagation and statistics, and least squares data modeling. It emphasizes array-based or matrix inversion and spectral analysis using the fast Fourier transform (FFT) that dominates modern data analysis. Divided into two parts, this comprehensive hands-on textbook is excellent for exploring data analysis principles and practice using MATLAB (R), Mathematica, Mathcad, and other modern equation solving software. Part I, for beginning undergraduate students, introduces the basic approaches for quantifying data variations in terms of environmental parameters. These approaches emphasize uses of the data array or matrix, which is the fundamental data and mathematical processing format of modern electronic computing. Part II, for advanced undergraduate and beginning graduate students, extends the inverse problem to least squares solutions involving more than two unknowns. Features: Offers a uniquely practical guide for making students proficient in modern electronic data analysis and graphics Includes topics that are not explained in any existing textbook on environmental data analysis Data analysis topics are very well organized into a two-semester course that meets general education curriculum requirements in science and engineering Facilitates learning by beginning each chapter with an 'Overview' section highlighting the topics covered, and ending it with a 'Key Concepts' section summarizing the main technical details that the reader should have acquired Indexes many numerical examples for ready access in the classroom or other venues serviced by electronic equation solvers like MATLAB (R), Mathematica, Mathcad, etc. Offers supplemental exercises and materials to enhance understanding the principles and practice of modern data analysis
This book explores the applicability of multiple remote sensors to acquire information relevant to restoration and conservation efforts in wetlands using data collected from airborne and space multispectral/hyperspectral sensors, light detection and ranging (LiDAR), Unmanned Aircraft Systems (UAS), and a hand-held spectroradiometer. This book also examines digital data processing techniques such as object-based image analysis, machine learning, texture analysis, and data fusion. After an introduction to the Everglades and to remote sensing, the book is divided into four parts based on the sensor systems used. There are chapters on vegetation mapping, biomass and water quality modeling, applications of hyperspectral data for plant stress analysis and coral reef mapping, studies of airborne LiDAR data for coastal vulnerability analysis and DEM improvement, as well as chapters that explore a fusion of multiple sensors for different datasets. Features Introduces concepts, theories, and advanced processing techniques A complete introduction of machine learning, object-based image analysis, data fusion, and ensemble analysis techniques in processing data from multiple remote sensors Explains how multiple remote sensing systems are applied in the wetland ecosystems of Florida The author had been teaching and using both systems and her research is widely recognized Multi-sensor System Applications in the Everglades Ecosystems provides a comprehensive application of remote sensing techniques in the Florida Everglades and its coastal ecosystems. It will prove an invaluable resource for the restoration and conservation of the Florida Everglades and beyond, for global wetlands in general. Any professional, scientist, engineer, or student working with remote sensing and wetland ecosystems will reap enormous benefits from this book.
Although GIS provides powerful functionality for spatial analysis, data overlay and storage, these spatially oriented systems lack the ability to represent temporal dynamics, which is a major impediment to its use in surface modeling. However, rapid development of computing technology in recent years has made real-time spatial analysis and real-time data visualization become realizable. Based on newly developed methods, Surface Modeling: High Accuracy and High Speed Methods explores solutions to big-error and slow-efficiency problems, two critical challenges that have long plagued those working in with geographical information system (GIS) and computer-aided design (CAD). By developing high accuracy and high speed methods for surface modeling, the book builds a bridge between the mathematical-oriented theory of surface modeling and the user-oriented application where the user is actually able to retrieve information on the method itself. The author examines a novel method of high accuracy surface modeling (HASM) in terms of the fundamental theorem of surfaces. He then analyzes the coefficient matrix and develops an adaptive method of HASM (HASM-AM), a multi-grade method of HASM (HASM-MG), and an adjustment method of HASM (HASM-AD). He uses numerical tests and real world studies to demonstrate that HASM-AM, HASM-MG, and HASM-AD have highly accelerated computational speed, especially for simulations with huge computational work. Building on this, the book discusses a HASM-based method for dynamic simulation (HASM-FDS), and then applies HASM methods to simulate terrains, climate change, ecosystem change, land cover, and soil properties. It demonstrates HASM's potential for simulating population distribution, human carrying capacity, ecosystem services, ecological diversity, change detection, and wind velocity. The book concludes with a discussion of the problems that exist in surface modeling on a global level and evaluates possible solutions to these problems.
Written from the perspective of developing countries, this book discusses the development process from a spatial perspective, focussing particularly on the evoltuion of the intra-national space-economy. With emphasis on African nations, this book offers a distinctive interpretation of the current situation and policy prescriptions differing significantly from previous literature in the area.
The book describes the structure, composition and evolution of the Earth, the main geological processes occurring on it, and how some crucial environmental matters that are amply debated in the media (e.g. pollution, greenhouse effect) can be fully understood by placing them in the holistic context of the system Earth as a whole. It provides basic information on a series of key geological issues, from the structure and composition of the Earth to the large-scale processes that characterize our planet, such as rock alteration and sedimentation, magmatism, geomagnetism, seismicity, plate tectonics, cyclical migration of chemical elements through various Earth reservoirs (Geochemical Cycles), and evolution of the planet from Hadean to present. It intends to reach a wide readership, which is interested in our planet and wish to have a general and comprehensive view of its origin, evolution and activity. Potential readership includes undergraduate and advanced undergraduate students in Geology and other scientific disciplines, and any moderately- to well-educated people interested in the surrounding world and eager to gain a basic knowledge of the Earth and to reach an integrated view of how our planet is working.
Building on the success of T.J.T. Spanos's previous book The Thermophysics of Porous Media, The Physics of Composite and Porous Media explains non-linear field theory that describes how physical processes occur in the earth. It describes physical processes associated with the interaction of the various phases at the macroscale (the scale at which continuum equations are established) and how these interactions give rise to additional physical processes at the megascale (the scale orders of magnitude larger at which a continuum description may once again be established). Details are also given on how experimental, numerical and theoretical work on this subject fits together. This book will be of interest to graduate students and academic researchers working on understanding the physical process in the earth, in addition to those working in the oil and hydrogeology industries.
Many of the challenges of the next century will have physical dimensions, such as tsunamis, hurricanes, and climate change as well as human dimensions such as economic crises, epidemics, and emergency responses. With pioneering editors and expert contributors, Advanced Geoinformation Science explores how certain technical aspects of geoinformation have been used and could be used to address such global issues. The editors and chapter authors have been involved in global initiatives such as Global Earth Observation System of Systems (GEOSS) and Digital Earth, and research problems such as air quality, public health, and cloud computing. The book delineates the problems communities are likely to face and how advanced geoinformation science can be a part of their solution. It introduces different methods in collecting spatial data as the initial feeds to geoinformation science and computing platforms. It discusses systems for data management, data integration and analysis, the geoinformation infrastructure, as well as knowledge capture, formatting, and utilization. The book then explores a variety of geoinformation applications, highlighting environmental, agriculture, and urban planning uses. Geoinformation science encompasses more than just traditional technologies such as Remote Sensing, GIS, GPS, and supporting disciplines. And although the science continues to become more multidisciplinary, the literature remains compartmentalized according to the traditional disciplinary boundaries. Capturing recent developments in geoinformation science and linking IT with a wide range of Earth sciences, the authors explain how advanced technology and concepts play a significant role in recent advancements. Enhanced with forty-four color illustrations, live examples such as GOS and AirNow, and insights from NASA, EPA, and USGS, the book provides a vision for the future and explores how to bring that vision into reality.
This book introduces in detail the physical and chemical phenomena and processes during petroleum production. It covers the properties of reservoir rocks and fluids, the related methods of determining these properties, the phase behavior of hydrocarbon mixtures, the microscopic mechanism of fluids flowing through reservoir rocks, and the primary theories and methods of enhancing oil recovery. It also involves the up-to-date progress in these areas. It can be used as a reference by researchers and engineers in petroleum engineering and a textbook for students majoring in the area related with petroleum exploitation.
Helping you better understand the processes, instruments, and methods of aerosol spectroscopy, Fundamentals and Applications in Aerosol Spectroscopy provides an overview of the state of the art in this rapidly developing field. It covers fundamental aspects of aerosol spectroscopy, applications to atmospherically and astronomically relevant problems, and several aspects that need further research and development. Chapters in the book are arranged in order of decreasing wavelength of the light/electrons. The text starts with infrared spectroscopy, one of the most important aerosol characterization methods for laboratory studies, field measurements, remote sensing, and space missions. It then focuses on Raman spectroscopy for investigating aerosol processes in controlled laboratory studies and for analyzing environmental particles and atmospheric pollution. The next section discusses the use of cavity ring-down spectroscopy to measure light extinction, laser-induced fluorescence spectroscopy to identify and classify biological aerosol particles, and ultrafast laser techniques to improve the specificity of bioaerosol detection. The final section examines recent developments involving novel techniques based on UV, x-ray, and electron beam studies. This book offers the first comprehensive overview of the spectroscopy of aerosols. It includes some results for the first time in the literature and presents a unique link between fundamental aspects and applications.
Spatiotemporal Random Fields: Theory and Applications, Second Edition, provides readers with a new and updated edition of the text that explores the application of spatiotemporal random field models to problems in ocean, earth, and atmospheric sciences, spatiotemporal statistics, and geostatistics, among others. The new edition features considerable detail of spatiotemporal random field theory, including ordinary and generalized models, as well as space-time homostationary, isostationary and hetrogeneous approaches. Presenting new theoretical and applied results, with particular emphasis on space-time determination and interpretation, spatiotemporal analysis and modeling, random field geometry, random functionals, probability law, and covariance construction techniques, this book highlights the key role of space-time metrics, the physical interpretation of stochastic differential equations, higher-order space-time variability functions, the validity of major theoretical assumptions in real-world practice (covariance positive-definiteness, metric-adequacy etc.), and the emergence of interdisciplinary phenomena in conditions of multi-sourced real-world uncertainty.
Environmental policy is often practiced reactively with each crisis addressed as an isolated event. Focusing on development of proactive policies, Global Environment Policy: Concepts, Principles, and Practice provides the essential scientific and socioeconomic framework for formulating pragmatic and comprehensive environmental policies. It discusses topics of interest to American and international audiences. Beginning with basic concepts, the book proceeds successively on to more advanced principles, theories, and practices for developing and implementing comprehensive environmental policy solutions. Topics are introduced in a logical, yet connected, user-friendly manner. Using practical case studies and examples, the book illustrates both the power and limitations of theoretical approaches. It defines the scope and nature of the environmental policy problem, outlining its origins and evolution, and introduces the policy frameworks of the United Nations, European Union, and the United States. Each chapter begins with a case study and ends with a problem set; the questions are designed to elicit practical and critical thinking. The book ends with two capstone problems that exemplify nearly every major topic and aspect presented in this book. Upon completion, students should possess the competency required to examine a real world problem, evaluate it in terms of the concepts, principles, and tools described throughout the book, and develop a practical policy solution for resolving that problem.
The first edition of Asbestos: Risk Assessment, Epidemiology, and Health Effects received critical acclaim due to the interdisciplinary nature of its content. Editors Ronald Dodson and Samuel Hammar have carefully kept this popular focus while updating and expanding the topics covered in the first edition with the help of internationally known experts. While there are hundreds of books available on many different aspects of asbestos, none contain the encyclopedic, comprehensive coverage you will find here. See What's New in the Second Edition: Definitions of asbestos by different methodologies and the potential impact that those forms have on health Internationally accepted sampling/analytical schemes Findings of major asbestos-related diseases that continue to increase in most industrialized countries where asbestos is widely used Information on asbestos-induced diseases in biological systems Expanded regulations chapter Copiously illustrated with diagrams, tables, and photographs, including some in color, the book remains an interdisciplinary resource on the major issues in asbestos exposure and human health, with coverage that spans history, pathology, and epidemiology as well as sampling, analysis, and regulatory issues. The editors' expertise and careful updating set this book apart, making it a comprehensive resource that interlinks diverse specialties. They provide an updated and expanded state-of-the-art discussion of important interdisciplinary factors associated with asbestos-related issues in an easy-to-use reference.
The world's food production is undergoing a rapid and revolutionary transformation, but little is known about it and less is being done to question the wisdom of it. Within a very few years, much of what we eat will have been genetically engineered, without proper consideration of the issues of public health, consumer choice and ecological stability. Against the Grain argues that the consequences of this huge experiment could be catastrophic, and at the very least have been underestimated or ignored by the industries exploiting the new technologies. The authors have unearthed government and industry documents which show these new methods to be far from fail-safe or risk free. Comprehensively supported with facts and references, the book provides a full account of the science and technologies involved in producing 'transgenic plants'. It also explains the scale and speed of what is going on, and argues for full public accountability and control of new developments - before it is too late.
Did you know your irises are lying to you and all human eyes are actually brown? Want to know the absolute worst way to die, according to science? Did you know that a smoking psychedelic toad milk could alleviate depression for up to four weeks? 117 Things You Should F*#king Know About Your World tells you the answers to these questions and many more weird and wonderful facts about the universe. Split into the site's different subject areas of environment, technology, space, health and medicine, plants and animals, physics and chemistry, this is the ultimate science book. With 25 million social media followers, I F*#king Love Science is the world's favourite source of science on the web. From missing nuclear weapons and Facebook secret files to the world's smallest computer and why you should wrap your car keys in tinfoil, this is the book that only the world's leading source of crazy-but-true stories could produce.
Around the world, on average, four coal miners die for each million tons of coal recovered. Improving the safety of mining work while responding to the need for increased coal production, however, is impossible without further development of the physics of mining processes. A relatively new branch of science, it tackles problems that arise during mineral products recovery, particularly safety issues such as rock failures, coal and gas outbursts, and methane explosions. The first book to present a unifying methodology for addressing problems such as outbursts and explosions of methane in coal mining, Physics of Coal and Mining Processes integrates theoretical and experimental research on coal and bearing rocks and examines the anthropogenic processes that occur during deep underground mining. The book summarizes the results of recent and established research, including studies conducted at the Institute of Physics of Mining Processes of the National Academy of Sciences of Ukraine, headed by the author. Key topics covered include rock mass in multi-component compressive stress fields and phase conditions of methane in coal. The book also examines state-of-the-art instrumentation and physical methods of analysis, among them x-ray analysis of coal structures combined with computer simulation and nuclear magnetic resonance (NMR) spectroscopy combined with gas chromatography. Bridging the gap between the academic theory and the practice of coal mining, the book proposes novel methods to predict rock mass condition, control gas-dynamic phenomena, and estimate safe mining loads. A useful reference for scientists, technicians, and engineers working in the coal industry, it also offers an overview of the physics of mining processes for students pursuing careers in the field.
There are thousands of environmental analyses prepared each year to meet the requirements of the National Environmental Policy Act (NEPA) and similar programs. Written by an expert with 35 years of experience in environmental consulting, research, and education, Environmental Impact Analysis: Process and Methods makes the preparation of EIAs not only easier but more thorough. It provides a guide to successfully preparing analyses that are legally defensible; establish the base for environmental protection; and produce better projects, plans, and policies. Following an informal description of the legal requirements, the book breaks down the analysis process into a logical flow of steps and available methods to identify impacts, compare alternatives, and develop impact mitigation measures. The author illustrates each step and analysis method with examples from case studies he managed, providing insight not available from an independent review of the cases. He offers a comprehensive and consistent approach to analysis with each chapter building on information presented in previous sections. The book also describes methods from other programs such as hazardous waste clean-up and Natural Resources Damage Assessment and explains how they can be adapted for use in environmental impact analysis. It compares a diverse array of multi-level environmental impact analysis approaches. Readers learn not only how to produce an environmental document that meets regulations but also clearly maximizes the benefits of the analysis and results in a more useful product with strong stakeholder support.
The ability to effectively monitor the atmosphere on a continuous basis requires remote sensing in microwave. Written for physicists and engineers working in the area of microwave sensing of the atmosphere, Ground-Based Microwave Radiometry and Remote Sensing: Methods and Applications is completely devoted to ground-based remote sensing. This text covers the fundamentals of microwave remote sensing, and examines microwave radiometric measurements and their applications. The book discusses the atmospheric influences on the electromagnetic spectrum, addresses the measurement of incoherent electromagnetic radiation from an object obeying the laws of radiation fundamentals, and explores the height limits in both the water vapor band and the oxygen band. The author describes the measurement technique of water vapor in the polar region, details studies of the measurement of integrated water vapor content by deploying a microwave radiometer, and presents several real-time pictures of radiometric and disdrometer measurements. Includes integrated water vapor and cloud liquid water models Contains measurements in adverse weather conditions Illustrates measurement technique in the Antarctic and Arctic regions Describes rain models in different locations including tropical, temperate regions along with radiometric measurement techniques Presents a definite model for measurement of propagation path delay The book summarizes the latest research results obtained in the area of measurements and modeling, describes the atmospheric influences on electromagnetic spectrum along with different gaseous and cloud models, and provides examples of radiometric retrievals from a variety of dynamic weather phenomena.
Provides a thorough and up-to-date overview of radiogenic and stable isotope geochemistry Now in its second edition, Isotope Geochemistry presents a comprehensive introduction to radiogenic and stable isotope geochemistry. The book opens with an overview of the physics and origins of atoms and nuclei, followed by a review of radioactive decay schemes and geochronological techniques such as fission-track and carbon-14 dating. Subsequent chapters cover nucleosynthetic anomalies in meteorites, early solar system chronology, the theory and application of stable isotope geochemistry, isotopic variation in the noble gases, and more. This edition includes new sections on thermochronology, U-He dating, recently published La-Ce isotope data, stable isotopes in ore deposits, nuclear volume and nuclear spin effects, and the application of isotope geochemistry in areas such as agriculture, forensics, and environmental studies. Revised and expanded discussions address topics including isotope cosmochemistry, non-traditional isotopes, nucleosynthesis, advanced U-Pb dating and isotopic analysis technologies, the subcontinental lithosphere, and mass-independent isotope fractionation. Describes the use of radiogenic isotopes in understanding the evolution of the Earth's mantle, crust, and oceans Explores the use of stable isotopes in areas such as mantle evolution, archeology, paleontology, ore formation, and paleoclimatology Reviews new developments in the understanding of nucleosynthesis, including insights gained from the study of the 2017 neutron star merger detected by gravitational waves Discusses progress in the field of unconventional isotopes, advances in isotope cosmochemistry, and recent data on regional variations in isotopic compositions Illustrated in full color throughout, Isotope Geochemistry, Second Edition is an excellent textbook for undergraduate and postgraduate students in all earth science disciplines.
Poor Environmental Impact Statement (EIS) practice leads to poorly planned projects, and ultimately poor environmental protection. Written by recognized NEPA authority Charles H. Eccleston, The EIS Book: Managing and Preparing Environmental Impact Statements supplies focused direction on preparing an EIS, highlighting best professional practices (BBP) and lessons learned from case law that provide valuable direction for preparing legally defensible documents. The book is not about preparing bigger or more complicated EISs-but better ones. Beginning with fundamental topics and advancing into successively more advanced subjects, Eccleston describes EIS preparation as a comprehensive framework for planning future actions, rather than merely a document preparation procedure. He supplies direction for preparing defensible analyses that facilitate well-planned projects and improved decision-making. Discusses EIS document requirements including the Council of Environmental Quality's NEPA regulations and related guidelines, EPA guidance and requirements, presidential executive orders, and case law Covers how to perform a legally sufficient cumulative impact assessment and how to evaluate greenhouse emissions and climate change Details a step-by-step approach for navigating the entire EIS process that includes all pertinent process requirements from issuing the notice of intent, through public scoping, to issuing the final record of decision (ROD) Includes analytical requirements for preparing the EIS analysis and guidance for performing various types of analyses Provides tools, techniques, and best professional practices for preparing the EIS and performing the analysis Presents a case study that reinforces key EIS regulatory requirements, and integrates lessons learned from this case study with appropriate regulatory requirements The book gives readers a firm grasp of the process for preparing an EIS, including all key regulatory requirements that a legally sufficient EIS document must satisfy. No other book synthesizes all such requirements and guidance into a single source for easy and rapid access.
Because prevailing atmospheric/troposcopic conditions greatly influence radio wave propagation above 10 GHz, the unguided propagation of microwaves in the neutral atmosphere can directly impact many vital applications in science and engineering. These include transmission of intelligence, and radar and radiometric applications used to probe the atmosphere, among others. Where most books address either one or the other, Microwave Propagation and Remote Sensing: Atmospheric Influences with Models and Applications melds coverage of these two subjects to help readers develop solutions to the problems they present. This reference offers a brief, elementary account of microwave propagation through the atmosphere and discusses radiometric applications in the microwave band used to characterize and model atmospheric constituents, which is also known as remote sensing. Summarizing the latest research results in the field, as well as radiometric models and measurement methods, this book covers topics including: Free space propagation Reflection, interference, polarization, and other key aspects of electromagnetic wave propagation Radio refraction and its effects on propagation delay Methodology of estimating water vapor attenuation using radiosonde data Knowledge of rain structures and use of climatological patterns to estimate/measure attenuation of rain, snow, fog, and other prevalent atmospheric particles and human-made substances Dual/multifrequency methodology to deal with the influence of clouds on radiometric attenuation Deployment of microwaves to ascertain various tropospheric conditions Composition and characteristics of the troposphere, to help readers fully understand microwave propagation Derived parameters of water, free space propagation, and conditions and variable constituents such as water vapor and vapor pressure, density, and ray bending
Jan Mayen is a volcanic island surrounded by the deep Greenland, Iceland and Norwegian Seas. There, atmospheric and oceanic processes unleash potential energy that forces very dynamic interactions between sea and air. This unique geophysical focal point generates climatic variability in northern Europe, and supports marine biological production that sustains the yield of large living resources. The marine populations are clearly fluctuating with variations in climate, and raises questions about effects of man-made climate change. Since the last Ice Age the sinking of Greenland Sea Deep-Water has been a substantial driving force for the Global Thermo-Haline Circulation which feeds warm Atlantic water into the Nordic Seas. Global warming may interact with the deep-water formation and force feedback mechanisms that express themselves beyond imagination. The book addresses such problems to raise an interest for doing research on the island and in its waters. The potentials for doing that increases when the island's Loran-C station closes down in 2005. The book recommends how the international scientific community may gain access to this really challenging arena for local, regional and Global research. It is a blueprint for the logistics required for science to succeed in a very remote and physically demanding place on Earth.
AEROSOL TECHNOLOGY An in-depth and accessible treatment of aerosol theory and its applications The Third Edition of Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles delivers a thorough and authoritative exploration of modern aerosol theory and its applications. The book offers readers a working knowledge of the topic that reflects the numerous advances that have been made across a broad spectrum of aerosol-related application areas. New updates to the popular text include treatments of nanoparticles, the health effects of atmospheric aerosols, remote sensing, bioaerosols, and low-cost sensors. Additionally, readers will benefit from insightful new discussions of modern instruments. The authors maintain a strong focus on the fundamentals of the discipline, while providing a robust overview of real-world applications of aerosol theory. New exercise problems and examples populate the book, which also includes: Thorough introductions to aerosol technology, key definitions, particle size, shape, density, and concentration, as well as the properties of gases Comprehensive explorations of uniform particle motion, particle size statistics, and straight-line acceleration and curvilinear particle motion Practical discussions of particle adhesion, Brownian motion and diffusion, thermal and radiometric forces, and filtration In-depth examinations of sampling and measurement of concentration, respiratory deposition, coagulation, condensation, evaporation, and atmospheric aerosols Perfect for senior undergraduate and junior graduate students of science and technology, Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles will also earn a place in the libraries of professionals working in industrial hygiene, air pollution control, climate science, radiation protection, and environmental science. |
![]() ![]() You may like...
Frontiers Of Space And Ground-Based…
Willem Wamsteker, Malcolm S. Longair, …
Hardcover
R8,470
Discovery Miles 84 700
New Phenomena And New States Of Matter…
Cesar Augusto Zen Vasconcellos, Peter Otto Hess, …
Hardcover
R3,332
Discovery Miles 33 320
The Disordered Cosmos - A Journey Into…
Chanda Prescod-Weinstein
Hardcover
R723
Discovery Miles 7 230
|