![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > General
Van der Waals Heterostructures A comprehensive resource systematically detailing the developments and applications of van der Waals heterostructures and devices Van der Waals Heterostructures is essential reading to understand the developments made in van der Waals heterostructures and devices in all aspects, from basic synthesis to physical analysis and heterostructures assembling to devices applications, including demonstrated applications of van der Waals heterostructure on electronics, optoelectronics, and energy conversion, such as solar energy, hydrogen energy, batteries, catalysts, biotechnology, and more. This book starts from an in-depth introduction of van der Waals interactions in layered materials and the forming of mixed-dimensional heterostructures via van der Waals force. It then comprehensively summarizes the synthetic methods, devices building processes and physical mechanism of 2D van der Waals heterostructures, and devices including 2D-2D electronics, 2D-2D optoelectronics, and mixed dimensional van der Waals heterostructures. In Van der Waals Heterostructures, readers can expect to find specific information on: The current library of 2D semiconductors and the current synthesis and performances of 2D semiconductors Controllable synthesis and assemble van der Waals heterostructures, physics of the van der Waals interface, and multi-field coupling effects 2D-2D electronics, 2D-2D optoelectronics, mixed dimensional van der Waals heterostructures, and van der Waals heterostructure applications on energy conversion Insight into future perspectives of the van der Waals heterostructures and devices with the detailed effective role of 2D materials for integrated electrical and electronic equipment
Nitrogen-Rich Energetic Materials Provides in-depth and comprehensive knowledge on both the chemistry and practical applications of nitrogen-rich energetic materials Energetic materials, a class of material with high amounts of stored chemical energy, include explosives, pyrotechnics, and propellants. Initially used for military applications, nitrogen-rich energetic materials have become important in the civil engineering and aerospace sectors, they are increasingly used in commercial mining and construction as well as in rocket propulsion. Making these nitrogen-rich energetic materials safer, more powerful, and more cost-effective requires a thorough understanding of their chemistry, physics, synthesis, properties, and applications. Nitrogen-Rich Energetic Materials presents a detailed summary of the development of nitrogen-rich energetic materials over the past decade and provides up-to-date knowledge on their applications in various areas of advanced engineering. Edited by a panel of international experts in the field, this book examines the chemistry of pentazoles, fused ring and laser ignitable nitrogen-rich compounds, polynitrogen and tetrazole-based energetic compounds, and more. The text also introduces applications of nitrogen-rich energetic materials in energetic polymers and metal-organic frameworks, as pyrotechnics materials for light and smoke, and in oxadiazoles from precursor molecules. This authoritative volume: Presents in-depth chapters written by leading experts in each sub-field covered Offers a systematic introduction to new and emerging applications of nitrogen-rich energetic materials such as in computational chemistry Discusses recent advances in nitrate ester chemistry with focus on propellant applications Discusses green and eco-friendly approaches to nitrogen-rich compounds Nitrogen-Rich Energetic Materials is an important resource for researchers, academics, and industry professionals across fields, including explosives specialists, pyrotechnicians, materials scientists, polymer chemists, laser specialists, physical chemists, environmental chemists, chemical engineers, and safety officers.
Additive Manufacturing Technology Highly comprehensive resource covering all key aspects of the current developments of additive manufacturing Additive Manufacturing Technology: Design, Optimization, and Modeling provides comprehensive and in-depth knowledge of the latest advances in various additive manufacturing technologies for polymeric materials, metals, multi-materials, functionally graded materials, and cell-laden bio-inks. It also details the application of numerical modeling in facilitating the design and optimization of materials, processes, and printed parts in additive manufacturing. The topics covered in this book include: Fundamentals and applications of 4D printing, 3D bioprinting of cell-laden bio-inks, and multi-material additive manufacturing Alloy design for metal additive manufacturing, mechanisms of metallurgical defect formation, and the mechanical properties of printed alloys Modified inherent strain method for the rapid prediction of residual stress and distortion within parts fabricated by additive manufacturing Modeling of the different stages in polymer and metal additive manufacturing processes, including powder spreading, melting, and thermal stress evolution By providing extensive coverage of highly relevant concepts and important topics in the field of additive manufacturing, this book highlights its essential role in Industry 4.0 and serves as a valuable resource for scientists, engineers, and students in materials science, engineering, and biomedicine.
Biomedical Engineering An exploration of materials processing and engineering technology across a wide range of medical applications The field of biomedical engineering has played a vital role in the progression of medical development technology. Biomedical Engineering: Materials, Technology, and Applications covers key aspects of the field—from basic concepts to advanced level research for medical applications. The book stands as a source of inspiration for research on materials as well as their development and practical application within specialized industries. It begins with a discussion of what biomedical engineering is and concludes with a final chapter on the advancements of biomaterials technology in medicine. Offers comprehensive coverage of topics, including biomaterials, tissue engineering, bioreceptor interactions, and various medical applications Discusses applications in critical industries such as biomedical diagnosis, pharmaceutics, drug delivery, cancer detection, and more Serves as a reference for those in scientific, medical, and academic fields Biomedical Engineering takes an interdisciplinary look at how biomedical science and engineering technology are integral to developing novel approaches to major problems, such as those associated with disease diagnosis and drug delivery. By covering a full range of materials processing and technology-related subjects, it shares timely information for biotechnologists, material scientists, biophysicists, chemists, bioengineers, nanotechnologists, and medical researchers.
Microstructural Geochronology Geochronology techniques enable the study of geological evolution and environmental change over time. This volume integrates two aspects of geochronology: one based on classical methods of orientation and spatial patterns, and the other on ratios of radioactive isotopes and their decay products. The chapters illustrate how material science techniques are taking this field to the atomic scale, enabling us to image the chemical and structural record of mineral lattice growth and deformation, and sometimes the patterns of radioactive parent and daughter atoms themselves, to generate a microstructural geochronology from some of the most resilient materials in the solar system. First compilation of research focusing on the crystal structure, material properties, and chemical zoning of the geochronology mineral archive down to nanoscale Novel comparisons of mineral time archives from different rocky planets and asteroids and their shock metamorphic histories Fundamentals on how to reconstruct and date radiogenic isotope distributions using atom probe tomography Microstructural Geochronology will be a valuable resource for graduate students, academics, and researchers in the fields of petrology, geochronology, mineralogy, geochemistry, planetary geology, astrobiology, chemistry, and material science. It will also appeal to philosophers and historians of science from other disciplines.
A complete guide to solving lateral load path problems-fully updated for current practices and regulations This thoroughly revised guide explains how to calculate the lateral forces to be transferred across multiple diaphragm and shear wall discontinuities. You will get step-by-step examples that offer progressive coverage-from very basic to very advanced illustrations of load paths in complicated structures. Written by a team of seasoned structural engineers and certified building official, The Analysis of Irregular Shaped Structures: Wood Diaphragms and Shear Walls, Second Edition contains comprehensive explanations of current topics, including cross laminated timber (CLT) which can be used in mass timber construction. You will get thorough coverage of up-to-date structural codes, requirements, and standards and includes newly developed structure types and new design solutions. Covers new topics of diaphragm solutions including CLT diaphragms and shear walls, a new method for calculating FTAO shear walls, and an expanded discussion on cantilever diaphragm design. Updated to reflect the most recent codes and standards, including, ASCE 7-16, 2021 IBC, and 2021 SDPWS with new CLT diaphragm and shear wall design requirements and guidelines. Written by a team of experienced structural engineers and certified building official.
A comprehensive primary resource for researchers interested in nanocomposites for environmental remediation In Nanomaterials for Air and Water Purification, a team of distinguished researchers delivers an expert compilation of resources dealing with nano-based research for air and water remediation. The editors have included works by reputed researchers covering characterization, fabrication, and applications. This book is intended as a primary reference for researchers in academia and industry to offer original insights into environmentally friendly polymers and their nanocomposites. It provides comprehensive discussions of the fundamentals, attributes, characteristics, and fabrication of the materials and composites relevant to these nanomaterials. Readers will also find: Thorough introductions to electrospun nanofiber membranes for effective air filtration and nanocomposite air filter membranes Comprehensive explorations of photocatalytic materials and technologies for air purification Practical discussions of opportunities for improving and protecting water supplies with nanomaterials Fulsome treatments of polymeric membranes incorporated with metal or metal oxide nanoparticles for water purification Perfect for environmental, polymer, and surface chemists, Nanomaterials for Air and Water Purification will also earn a place in the libraries of industry professionals with an interest in water and air purification.
Nanotechnology for Environmental Remediation Comprehensive resource on using nanomaterials to alleviate environmental pollution Contaminated land, soil and water pose a threat to the environment and health. These sites require immediate action in terms of assessing pollution and new remediation strategies. Nanotechnology for Environmental Remediation helps readers understand the potential of nanotechnology in resolving the growing problem of environmental contamination. The specific aim of this book is to provide comprehensive information relating to the progress in the development of functional nanomaterials and nanocomposites which are used for the environmental remediation of a variety of contaminants. The work deals with the different aspects of nanotechnology in water, air and soil contamination and presents the recent advances with a focus on remediation. Core topics discussed in the work include: Nanotechnology that can be used to engineer and tailor particles for specific environmental remediation applications A big-picture conceptual understanding of environmental remediation methods for researchers, environmentalists and professionals involved in assessing and developing new nano-based strategies A detailed approach towards the different remediation procedures by various nanomaterials such as metal nanoparticles, polymeric nanoparticles, carbon nanotubes, and dendrimers The societal impact that nanotechnology has on the environment Chemists and biotechnologists can use Nanotechnology for Environmental Remediation as a comprehensive reference work for thoroughly understanding this new type of technology and why it is so important when considering environmental remediation efforts. Due to the practical application of nanotechnologies, environmental organizations and agencies can also both utilize the work to explore new and more effective ways of doing things, both now and into the future as nanotechnology becomes more common.
This text deals with the behavior of polymers at surfaces and interfaces. Topics covered include the nature and properties of the surface of a polymer melt, the structure of interfaces among different polymers and between polymers and nonpolymers, the molecular basis of adhesion and the properties of polymers at liquid surfaces. Emphasis is placed on the underlying physical principles. It introduces statistical mechanics models of polymer behavior near interfaces, emphasizing theory that is applicable to experimental situations. Advanced undergraduates, graduate students and research workers in physics, chemistry and materials science with an interest in polymers will find this book of interest.
This book gathers the various aspects of the porous polymer field into one volume. It not only presents a fundamental description of the field, but also describes the state of the art for such materials and provides a glimpse into the future. Emphasizing a different aspect of the ongoing research and development in porous polymers, the book is divided into three sections: Synthesis, Characterization, and Applications. The first part of each chapter presents the basic scientific and engineering principles underlying the topic, while the second part presents the state of the art results based on those principles. In this fashion, the book connects and integrates topics from seemingly disparate fields, each of which embodies different aspects inherent in the diverse field of porous polymeric materials.
This book focuses on the next generation sustainable organic electrodes and provides a guideline for the future development of these materials.
This volume provides an up-to-date overview of statistical energy analysis and its applications in structural vibration. It brings together nine articles by experts in S.E.A. from around the world, beginning with an introduction and overview of the technique describing its key successes, potential and limitations. Following chapters look in more detail at a selection of cases and examples that together illustrate the scope and power of the technique. The editors have included a chapter by Chohan et al. discussing nonconservatively coupled systems.
An all-in-one, comprehensive take on matter and its phase properties In Phases of Matter and Their Transitions, accomplished materials scientist Dr. Gijsbertus de With delivers an accessible textbook for advanced students in the molecular sciences. It offers a balanced and self-contained treatment of the thermodynamic and structural aspects of phases and the transitions between them, covering solids, liquids, gases and their interfaces. The book lays the groundwork to describe particles and their interactions from the perspective of classical and quantum mechanics and compares phenomenological and statistical thermodynamics. It also examines materials with special properties, like glasses, liquid crystals, and ferroelectrics. The author has included an extensive appendix with a guide to the mathematics and theoretical models employed in this resource. Readers will also find: Thorough introductions to classical and quantum mechanics, intermolecular interactions, and continuum mechanics Comprehensive explorations of thermodynamics, gases, liquids, and solids Practical discussions of surfaces, including their general aspects for solids and liquids Fulsome treatments of discontinuous and continuous transitions, including discussions of irreversibility and the return to equilibrium Perfect for advanced students in chemistry and physics, Phases of Matter and Their Transitions will also earn a place in the libraries of students of materials science.
This book offers a fresh, readable approach to the analysis of mechanical systems. It is written as an introduction to analytical dynamics, with an emphasis on fundamental concepts in mechanics. The book begins with a description of the motion of a particle subjected to constraints, and presents explicit equations of motion that govern large classes of constrained mechanical systems with refreshingly simple results. The authors provide examples throughout the book, as well as carefully formulated end-of-chapter problems that reinforce the material covered.
Modern learning resource providing broad coverage of the rapidly-advancing field of upconverting nanoparticles This modern reference explains photon upconversion technology using nanoparticles from first principles to novel and future applications in imaging, sensing, catalysis, energy technology, biomedicine, and many other areas. Expert authors discuss both established and novel materials and applications, going far beyond the coverage of previously published books on the subject. Key topics covered in the book include: Synthesis, characterization, and basic properties of nanoparticles with photon-upconverting properties New types of upconverting nanoparticles, including transition metal- and rare earth-doped materials, metal-organic frameworks, core/shell particles, and surface-modified particles Current and emerging application areas for upconverting nanoparticles, including heating, lighting, sensing, and detection Biomedical uses of nanoparticles, including photodynamic therapy Photon upconversion using nanoparticles has opened the door to a new universe of light-powered technology. This book is a key resource for scientists, physicists, and chemists across a wide range of disciplines who wish to master the theory, methods and applications of this powerful new technology.
Tailored Functional Oxide Nanomaterials A comprehensive exploration of the preparation and application of metal oxide nanomaterials Tailored Functional Oxide Nanomaterials: From Design to Multi-Purpose Applications delivers a one-of-a-kind discussion of the fundamentals and key applications of metal oxide nanomaterials. The book explores everything from their preparation to the mastering of their characteristics in an interdisciplinary view. The distinguished authors address theoretical research and advanced technological utilizations, illustrating key issues for the understanding and real-world end-uses of the most important class of inorganic materials. The interplay between the design, preparation, chemico-physical characterization, and functional behaviors of metal oxide nanomaterials in a variety of fields is presented. Up-to-date work and knowledge on these materials is also described, with fulsome summaries of important applications that are relevant to researchers pursuing safety, sustainability, and energy end-uses. Readers will also find: A thorough introduction to vapor phase growth of metal oxide thin films and nanostructures Comprehensive explorations of addressing complex transition metal oxides at the nanoscale, including bottom-up syntheses of nano-objects and properties Practical discussions of nanosized oxides supported on mats of carbon nanotubes, including synthesis strategies and performances of Ti/CNT systems In-depth examinations of computational approaches to the study of oxide nanomaterials and nanoporous oxides Perfect for materials scientists, inorganic chemists, physicists, catalytic chemists, and chemical engineers, Tailored Functional Oxide Nanomaterials will also earn a place in the libraries of solid-state chemists.
Papers from The American Ceramic Society's 31st International Conference on Advanced Ceramics and Composites, held in Daytona Beach, Florida, January 21-26, 2007. Content includes papers on recent technical progress by national laboratories, universities and private industries on solid oxide fuel cell technology including SOFC component materials, processing, cell/stack fabrication and design, electrochemical performance and stability, long-term chemical interactions, interface engineering, modeling, test procedures and performance analysis.
The two volumes that comprise this work provide a comprehensive guide and source book on the marine use of composite materials. The first volume, Fundamental Aspects, provides a rigorous development of theory. Areas covered include materials science, environmental aspects, production technology, structural analysis, finite-element methods, materials failure mechanisms and the role of standard test procedures. An appendix gives tables of the mechanical properties of common polymeric composites and laminates in marine use. The second volume, Practical Considerations, examines how the theory can be used in the design and construction of marine structures, including boats, submersibles, offshore structures and other deep-ocean installations.
This book describes the theory and practice of infrared and Raman spectroscopy as applied to the study of the physical and chemical characteristics of polymers. Its purpose is to give the beginning researcher in the field a firm foundation and a starting point for the study of more-advanced literature. To this end the book concentrates on the fundamentals of the theory and nomenclature, and on the discussion of well-documented illustrations of these fundamental principles, including many now-classic studies in the subject. No previous knowledge of either polymers or vibrational spectroscopy is assumed. The book will be of value to anyone beginning research on the vibrational spectroscopy of polymers, either from a physics or a chemistry background. It is intended to be especially suitable for use in undergraduate courses in physics, chemistry or materials science at both universities and polytechnics.
Explore the cutting-edge of neuromorphic technologies with applications in Artificial Intelligence In Neuromorphic Devices for Brain-Inspired Computing: Artificial Intelligence, Perception, and Robotics, a team of expert engineers delivers a comprehensive discussion of all aspects of neuromorphic electronics designed to assist researchers and professionals to understand and apply all manner of brain-inspired computing and perception technologies. The book covers both memristic and neuromorphic devices, including spintronic, multi-terminal, and neuromorphic perceptual applications. Summarizing recent progress made in five distinct configurations of brain-inspired computing, the authors explore this promising technology's potential applications in two specific areas: neuromorphic computing systems and neuromorphic perceptual systems. The book also includes: A thorough introduction to two-terminal neuromorphic memristors, including memristive devices and resistive switching mechanisms Comprehensive explorations of spintronic neuromorphic devices and multi-terminal neuromorphic devices with cognitive behaviors Practical discussions of neuromorphic devices based on chalcogenide and organic materials In-depth examinations of neuromorphic computing and perceptual systems with emerging devices Perfect for materials scientists, biochemists, and electronics engineers, Neuromorphic Devices for Brain-Inspired Computing: Artificial Intelligence, Perception, and Robotics will also earn a place in the libraries of neurochemists, neurobiologists, and neurophysiologists.
This collection of over 200 papers from the 9th Biennial Worldwide Congress on Refractories is broad-ranging and diverse in perspective. Topics include steelmaking refractories, castable technology, global refractories education and technology and industrial applications. Numerous papers are from representatives from major international steel companies.
Graphdiyne Discover the most cutting-edge developments in the study of graphdiyne from a pioneer of the field In Graphdiyne: Fundamentals and Applications in Renewable Energy and Electronics, accomplished chemist Dr. Yuliang Li delivers a practical and insightful compilation of theoretical and experimental developments in the study of graphdiyne. Of interest to both academics and industrial researchers in the fields of nanoscience, organic chemistry, carbon science, and renewable energies, the book systematically summarizes recent research into the exciting new material. Discover information about the properties of graphdiyne through theoretical simulations and experimental characterizations, as well as the development of graphdiyne with appropriate preparation technology. Learn to create new graphdiyne-based materials and better understand its intrinsic properties. Find out about synthetic methodologies, the controlled growth of aggregated state structures, and structural characterization. In addition to demonstrating the interdisciplinary potential and relevance of graphdiyne, the book also offers readers: A thorough introduction to basic structure and band gap engineering, including molecular and electronic structure, mechanical properties, and the layers structure of bulk graphdiyne Explorations of Graphdiyne synthesis and characterization, including films, nanotube arrays and nanowires, nanowalls, and nanosheets, as well as characterization methods Discussions of the functionalization of graphdiyne, including heteroatom doping, metal decoration, and absorption of guest molecules Rigorous treatments of Graphdiyne-based materials in catalytic applications, including photo- and electrocatalysts Perfect for organic chemists, electronics engineers, materials scientists, and physicists, Graphdiyne: Fundamentals and Applications in Renewable Energy and Electronics will also find its place on the bookshelves of surface and solid-state chemists, electrochemists, and catalytic chemists seeking a one-stop reference on this rising-star carbon material.
This book is a summary of microwave processing research, processing and characterization tools, and applications specifically applicable to ceramic engineers. It will serve as an update/summary of research related to microwave processing of ceramic materials and as an introductory book to those wishing to initiate microwave studies or who wish to determine the potential applications in their area of expertise.
The latest issue in the industry-leading Ceramic Transactions series The most up to date entry in the Ceramic Transactions series published by The American Ceramic Society (ACerS), Ceramic Transactions: Volume 270 delivers the newest research, data, and information relevant to advanced ceramics and composites, electronic ceramics, energy materials, biomaterials, environmental issues, waste management, and nanotechnology. |
You may like...
Aeroallergen and Food Immunotherapy, An…
Linda S. Cox, Anna H Nowak-Wegrzyn
Hardcover
R1,687
Discovery Miles 16 870
The Ageing Immune System and Health
Valquiria Bueno, Janet M Lord, …
Hardcover
Atomic physics - An exploration through…
Dmitry Budker, Derek Kimball, …
Hardcover
R4,040
Discovery Miles 40 400
Particle Detection with Drift Chambers
Walter Blum, Werner Riegler, …
Hardcover
R4,406
Discovery Miles 44 060
The Einstein, Podolsky, and Rosen…
Alexander Afriat, F. Selleri
Hardcover
R2,797
Discovery Miles 27 970
Non-perturbative Methods And Lattice…
Eric B. Gregory, Xiang-Qian Luo
Hardcover
R3,806
Discovery Miles 38 060
|