![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > General
Bioengineering is the application of physical sciences and mathematics to the study of living organisms and structures. This book introduces the student to the physical processes and engineering aspects of a systems performance both under normal and abnormal conditions, and helps them to design, develop and use diagnostic or artificial devices to measure, improve, safeguard or replace life functions.
INTELLIGENT AND SOFT COMPUTING SYSTEMS FOR GREEN ENERGY Written and edited by some of the world’s top experts in the field, this exciting new volume provides state-of-the-art research and the latest technological breakthroughs in next-generation computing systems for the energy sector, striving to bring the science toward sustainability. Real-world problems need intelligent solutions. Across many industries and fields, intelligent and soft computing systems, using such developing technologies as artificial intelligence and Internet of Things, are quickly becoming important tools for scientists, engineers, and other professionals for solving everyday problems in practical situations. This book aims to bring together the research that has been carried out in the field of intelligent and soft computing systems. Intelligent and soft computing systems involves expertise from various domains of research, such as electrical engineering, computer engineering, and mechanical engineering. This book will serve as a point of convergence wherein all these domains come together. The various chapters are configured to address the challenges faced in intelligent and soft computing systems from various fields and possible solutions. The outcome of this book can serve as a potential resource for industry professionals and researchers working in the domain of intelligent and soft computing systems. To list a few soft computing techniques, neural-based load forecasting, IoT-enabled smart grids, and blockchain technology for energy trading. Whether for the veteran engineer or the student learning the latest breakthroughs, this exciting new volume is a must-have for any library.
Pipe Flow Provides detailed coverage of hydraulic analysis of piping systems, revised and updated throughout Pipe Flow: A Practical and Comprehensive Guide provides the information required to design and analyze piping systems for distribution systems, power plants, and other industrial operations. Divided into three parts, this authoritative resource describes the methodology for solving pipe flow problems, presents loss coefficient data for a wide range of piping components, and examines pressure drop, cavitation, flow-induced vibration, and other flow phenomena that affect the performance of piping systems. Throughout the book, sample problems and worked solutions illustrate the application of core concepts and techniques. The second edition features revised and expanded information throughout, including an entirely new chapter that presents a mixing section flow model for accurately predicting jet pump performance. This edition includes additional examples, supplemental problems, and a new appendix of the speed of sound in water. With clear explanations, expert guidance, and precise hydraulic computations, this classic reference text remains required reading for anyone working to increase the quality and efficiency of modern piping systems. Discusses the fundamental physical properties of fluids and the nature of fluid flow Demonstrates the accurate prediction and management of pressure loss for a variety of piping components and piping systems Reviews theoretical research on fluid flow in piping and its components Presents important loss coefficient data with straightforward tables, diagrams, and equations Includes full references, further reading sections, and numerous example problems with solution Pipe Flow: A Practical and Comprehensive Guide, Second Edition is an excellent textbook for engineering students, and an invaluable reference for professional engineers engaged in the design, operation, and troubleshooting of piping systems.
This best-selling textbook presents the concepts of continuum mechanics in a simple yet rigorous manner. It introduces the invariant form as well as the component form of the basic equations and their applications to problems in elasticity, fluid mechanics and heat transfer, and offers a brief introduction to linear viscoelasticity. The book is ideal for advanced undergraduates and graduate students looking to gain a strong background in the basic principles common to all major engineering fields, and for those who will pursue further work in fluid dynamics, elasticity, plates and shells, viscoelasticity, plasticity, and interdisciplinary areas such as geomechanics, biomechanics, mechanobiology and nanoscience. The book features derivations of the basic equations of mechanics in invariant (vector and tensor) form and specification of the governing equations to various co-ordinate systems, and numerous illustrative examples, chapter summaries and exercise problems. This second edition includes additional explanations, examples and problems.
Sie suchen einen schnellen Überblick über die Strömungsmechanik? Dann ist dies genau das richtige Buch für Sie. Die Autoren erklären Ihnen erst, was man unter einem Fluid versteht, und welche Eigenschaften Fluide haben. Dann erläutern sie, was es zu ruhenden und sich bewegenden Fluiden zu wissen gibt, führen Sie in den Impulssatz und die Energiegleichung ein und vieles mehr. Kapitel zu kompressiblen Strömungen, Strömungsmaschinen und Strömungsmesstechnik folgen. Übungsaufgaben mit Lösungen helfen Ihnen, Ihr Wissen zu festigen und zu prüfen.
Current advances in the formulation and chemical aspects of glazes and glass coatings make this comprehensive resource the most up-to-date reference on glazes for the ceramics industry and studio potter. By focusing on the process of making ceramic coatings, their chemical makeup, and the properties of these coatings, "Understanding Glazes" is a book that will appeal to a wide-ranging audience from industries involved in the manufacturing of tile, ceramic coating materials, sanitaryware, tableware, hobby and giftware to faculty and students in ceramic engineering, to studio potters.
Discover the latest technologies in the pursuit of zero-waste solutions in the electronics industry In Electronic Waste: Recycling and Reprocessing for a Sustainable Future, a team of expert sustainability researchers delivers a collection of resources that thoroughly examine methods for extracting value from electronic waste while aiming for a zero-waste scenario in industrial production. The book discusses the manufacturing and use of materials in electronic devices while presenting an overview of separation methods for industrial materials. Readers will also benefit from a global overview of various national and international regulations related to the topic of electronic and electrical waste. A must-read resource for scientists and engineers working in the production and development of electronic devices, the authors provide comprehensive overviews of the benefits of achieving a zero-waste solution in electronic and electrical waste, as well as the risks posed by incorrectly disposed of electronic waste. Readers will enjoy: An introduction to electronic waste, including the opportunities presented by zero-waste technologies and solutions Explorations of e-waste management and practices in developed and developing countries and e-waste transboundary movement regulations in a variety of jurisdictions Practical discussions of approaches for estimating e-waste generation and the materials used in electronic equipment and manufacturing perspectives In-depth treatments of various recycling technologies, including physical separation, pyrometallurgy, hydrometallurgy, and biohydrometallurgy Perfect for materials scientists, electronic engineers, and metal processing professionals, Electronic Waste: Recycling and Reprocessing for a Sustainable Future will also earn a place in the libraries of industrial chemists and professionals working in organizations that use large amounts of chemicals or produce electronic waste.
Emphasizing their emerging capabilities, this volume provides a strong foundation for an understanding of how micro- and nanotechnologies used in biomedical research have evolved from concepts to working platforms. Volume editor Christopher Love has assembled here a highly interdisciplinary group of authors with backgrounds ranging from chemical engineering right up to materials science to reflect how the intersection of ideas from biology with engineering disciplines has spurred on innovations. In fact, a number of the basic technologies described are reaching the market to advance the discovery and development of biopharmaceuticals. The first part of the book focuses on microsystems for single-cell analysis, examining tools and techniques used to isolate cells from a range of biological samples, while the second part is dedicated to tiny technologies for modulating biological systems at the scale of individual cells, tissues or whole organisms. New tools are described which have a great potential for (pre)clinical development of interventions in a range of illnesses, such as cancer and neurological diseases. Besides describing the promising applications, the authors also highlight the ongoing challenges and opportunities in the field.
A three-volume comprehensive overview of the development and applications of various novel potent molecular sensor frameworks In Organic and Inorganic Materials Based Sensors (3 Volume Set), a team of distinguished researchers delivers an interdisciplinary presentation of the engineering of high-performance biopolymer-based bio-nanocomposites, as well as strategies for the use of various molecules in the detection of environmentally important guest analytes. This three-volume book explores the most relevant technological developments in nanomaterials sensors and offers a broad and comprehensive overview of cutting-edge research on advanced materials in the fast-moving sensors industry. The authors explain the science behind nanomaterials for environmental remediation as well as the components and ingredients of the relevant materials. Readers will also find: Thorough introductions to sensory devices, polymer-based nano-biomaterials, and opto-electrochemical devices Comprehensive explorations of metal-organic frameworks, organic sensors, and organic-inorganic composite semiconductor sensors Practical discussions of vapochromic and vapoluminescent sensors Fulsome treatments of sensor ecosystems for health self-monitoring, including discussions of diabetes management Perfect for materials scientists, mechanical engineers, and analytical chemists, Organic and Inorganic Materials Based Sensors will also benefit inorganic and organic chemists, robotics engineers, and professionals working in the sensor industry.
Bringing to life the fascinating structures and unique mechanics of natural and biomedical cellular materials, this book is an expert guide to the subject for graduates and researchers. Arranged in three parts, it begins with a review of the mechanical properties of nature's building blocks (structural proteins, polysaccharides and minerals) and the mechanics of cellular materials. Part II then describes a wide range of cellular materials in nature: honeycomb-like materials such as wood and cork; foam-like materials including trabecular bone, plant parenchyma, coral and sponge; and composites of cellular and dense materials such as iris leaves, skulls, palm, bamboo, animal quills and plant stems. Images convey the structural similarities of different materials, whilst color property charts provide mechanical data. Part III discusses biomedical applications of cellular materials: metal foams for orthopedic applications and porous scaffolds for regenerating tissues, including the effect of scaffold properties on cell behavior.
The 81st Conference on Glass Problems (GPC) was organized by the Kazuo Inamori School of Engineering, The New York State College of Ceramics, Alfred University, Alfred, NY 14802 and The Glass Manufacturing Industry Council (GMIC), Westerville, OH 43082. The Program Director was S. K. Sundaram, Inamori Professor of Materials Science and Engineering, Kazuo Inamori School of Engineering, The New York State College of Ceramics, Alfred University, Alfred, NY 14802. The Conference Director was Bob Lipetz, Executive Director, Glass Manufacturing Industry Council (GMIC), Westerville, OH 43082. The GPC Advisory Board (AB) included the Program Director, the Conference Director, and several industry representatives. The Board assembled the technical program. Donna Banks of the GMIC coordinated the events and provided support. Due to world-wide COVID-19 pandemic, the conference was a virtual event. It started with a full-day plenary session followed by technical sessions.
HUMAN MOTION CAPTURE AND IDENTIFICATION FOR ASSISTIVE SYSTEMS DESIGN IN REHABILITATION A guide to the core ideas of human motion capture in a rapidly changing technological landscape Human Motion Capture and Identification for Assistive Systems Design in Rehabilitation aims to fill a gap in the literature by providing a link between sensing, data analytics, and signal processing through the characterisation of movements of clinical significance. As noted experts on the topic, the authors apply an application-focused approach in offering an essential guide that explores various affordable and readily available technologies for sensing human motion. The book attempts to offer a fundamental approach to the capture of human bio-kinematic motions for the purpose of uncovering diagnostic and severity assessment parameters of movement disorders. This is achieved through an analysis of the physiological reasoning behind such motions. Comprehensive in scope, the text also covers sensors and data capture and details their translation to different features of movement with clinical significance, thereby linking them in a seamless and cohesive form and introducing a new form of assistive device design literature. This important book: Offers a fundamental approach to bio-kinematic motions and the physiological reasoning behind such motions Includes information on sensors and data capture and explores their clinical significance Links sensors and data capture to parameters of interest to therapists and clinicians Addresses the need for a comprehensive coverage of human motion capture and identification for the purpose of diagnosis and severity assessment of movement disorders Written for academics, technologists, therapists, and clinicians focusing on human motion, Human Motion Capture and Identification for Assistive Systems Design in Rehabilitation provides a holistic view for assistive device design, optimizing various parameters of interest to relevant audiences.
Comprehensively covers the basic principles and practice of Operational Modal Analysis (OMA). * Covers all important aspects that are needed to understand why OMA is a practical tool for modal testing * Covers advanced topics, including closely spaced modes, mode shape scaling, mode shape expansion and estimation of stress and strain in operational responses * Discusses practical applications of Operational Modal Analysis * Includes examples supported by MATLAB(R) applications * Accompanied by a website hosting a MATLAB(R) toolbox for Operational Modal Analysis
Das Lehrbuch zur Thermodynamik fur Werkstoffingenieure fur eine grundliche Ausbildung in einem der wichtigsten Teilgebiete der Werkstoffwissenschaften!
The new edition of this authoritative guide on liquid crystalline polymer (LCP) science has been produced in response to the wealth of new material recently generated in the field. It takes the reader through the theoretical underpinnings to real-world applications of LCP technology in a logical, well-integrated manner. A chapter on liquid biopolymers has been introduced, whilst the in-depth discussion on applications describes not only maturing fields of high strength structural LCPs, but also a detailed analysis of the developing area of functional materials. The in-depth coverage and detailed glossary establishes this as an indispensable text for graduate students and researchers in the polymer field, as well as being of interest to those working in chemistry, physics and materials science.
This book presents novel and efficient tools, techniques and approaches for reliability evaluation, reliability analysis, and design of reliable communication networks using graph theoretic concepts. In recent years, human beings have become largely dependent on communication networks, such as computer communication networks, telecommunication networks, mobile switching networks etc., for their day-to-day activities. In today's world, humans and critical machines depend on these communication networks to work properly. Failure of these communication networks can result in situations where people may find themselves isolated, helpless and exposed to hazards. It is a fact that every component or system can fail and its failure probability increases with size and complexity. The main objective of this book is to devize approaches for reliability modeling and evaluation of such complex networks. Such evaluation helps to understand which network can give us better reliability by their design. New designs of fault-tolerant interconnection network layouts are proposed, which are capable of providing high reliability through path redundancy and fault tolerance through reduction of common elements in paths. This book covers the reliability evaluation of various network topologies considering multiple reliability performance parameters (two terminal reliability, broadcast reliability, all terminal reliability, and multiple sources to multiple destinations reliability).
Smart Nanotextiles Wearable and Technical Applications This groundbreaking book comprehensively reviews the utilization of smart nanotextiles in various application areas by referring to requirements specific to various application fields, sharing the findings of some of the latest research efforts and state-of-art smart nanotextiles technologies, as well as providing insights relating to challenges and opportunities facing current and future smart nanotextiles. This book covers the emerging and exciting field of nanotextiles and their many applications. Smart nanotextiles form a novel group of materials that are utilized/can be utilized in an array of application areas, such as biomedicine (health monitoring, controlled drug release; wound care, and regenerative medicine), communication, sports, fashion, energy harvesting, protection, filtration, civil and geotechnical engineering, transportation, and so on, including wearable and technical fields. Whereas textiles provide a convenient platform for smart functionality, nanotechnology assures that the favorable characteristics of the textile structure are not impaired by the smart functioning components. Furthermore, based on the superior characteristics of nanostructured components in comparison to macromaterials and micromaterials, nanomaterials provide augmented smart functionality. However, despite the immense research efforts that have been devoted to smart nanotextiles, most of them have not yet transcended the commercialization stage due to high cost, difficulty in large-scale production, low reliability, and potential detrimental effects of nanomaterials on human health and the environment. The 12 chapters comprising this book are all written by subject-matter experts from around the world and discuss the next-generation products along with their challenges and opportunities. Audience Researchers, technologists, industrial engineers, and postgraduate students in the fields of textiles, intelligent materials, electronics, sensors, actuators, biomedicine, fashion, filtration, transportation, civil engineering, environmental engineering, communication, sports performance, and materials science, who have an interest in smart materials, nanotechnology and wearables.
Control theory is the main subject of this title, in particular analysis and control design for hybrid dynamic systems. The notion of hybrid systems offers a strong theoretical and unified framework to cope with the modeling, analysis and control design of systems where both continuous and discrete dynamics interact. The theory of hybrid systems has been the subject of intensive research over the last decade and a large number of diverse and challenging problems have been investigated. Nevertheless, many important mathematical problems remain open. This book is dedicated mainly to hybrid systems with constraints; taking constraints into account in a dynamic system description has always been a critical issue in control. New tools are provided here for stability analysis and control design for hybrid systems with operating constraints and performance specifications. Contents 1. Positive Systems: Discretization with Positivity and Constraints, Patrizio Colaneri, Marcello Farina, Stephen Kirkland, Riccardo Scattolini and Robert Shorten. 2. Advanced Lyapunov Functions for Lur e Systems, Carlos A. Gonzaga, Marc Jungers and Jamal Daafouz. 3. Stability of Switched DAEs, Stephan Trenn. 4. Stabilization of Persistently Excited Linear Systems, Yacine Chitour, Guilherme Mazanti and Mario Sigalotti. 5. Hybrid Coordination of Flow Networks, Claudio De Persis, Paolo Frasca. 6. Control of Hybrid Systems: An Overview of Recent Advances, Ricardo G. Sanfelice. 7. Exponential Stability for Hybrid Systems with Saturations, Mirko Fiacchini, Sophie Tarbouriech, Christophe Prieur. 8. Reference Mirroring for Control with Impacts, Fulvio Forni, Andrew R. Teel, Luca Zaccarian. About the Authors Jamal Daafouz is an expert in the area of switched and polytopic systems and has published several major results in leading journals (IEEE TAC, Automatica, Systems and Control Letters, etc.). He serves as an Associate Editor for the key journal IEEE TAC and is a member of the Editorial Board of the IEEE CSS society. Sophie Tarbouriech is an expert in the area of nonlinear systems with constraints and has published several major results in leading journals (IEEE TAC, Automatica, Systems and Control Letters, etc.) and books. She is a member of the Editorial Board of the IEEE CSS society and has also served as an Associate Editor for the key journal IEEE TAC. Mario Sigalotti is an expert in applied mathematics and switched systems and has published several results in leading journals (IEEE TAC, Automatica, Systems and Control Letters, etc.). He heads the INRIA team GECO and is a member of the IFAC Technical Committee on Distributed Parameter Systems.
Flexagons, paper models that can be bent in different ways to change their shape, are easy to make and work in surprising ways. This book contains numerous diagrams that the reader can photocopy and use to construct a variety of fascinating flexagons. The author also explains the mathematics behind these amazing creations. Although knowledge of the technical details requires a mathematical background, the models can be made and used by anyone. Flexagons appeals to all readers interested in puzzles and recreational mathematics.
Microstructural Geochronology Geochronology techniques enable the study of geological evolution and environmental change over time. This volume integrates two aspects of geochronology: one based on classical methods of orientation and spatial patterns, and the other on ratios of radioactive isotopes and their decay products. The chapters illustrate how material science techniques are taking this field to the atomic scale, enabling us to image the chemical and structural record of mineral lattice growth and deformation, and sometimes the patterns of radioactive parent and daughter atoms themselves, to generate a microstructural geochronology from some of the most resilient materials in the solar system. First compilation of research focusing on the crystal structure, material properties, and chemical zoning of the geochronology mineral archive down to nanoscale Novel comparisons of mineral time archives from different rocky planets and asteroids and their shock metamorphic histories Fundamentals on how to reconstruct and date radiogenic isotope distributions using atom probe tomography Microstructural Geochronology will be a valuable resource for graduate students, academics, and researchers in the fields of petrology, geochronology, mineralogy, geochemistry, planetary geology, astrobiology, chemistry, and material science. It will also appeal to philosophers and historians of science from other disciplines.
This book presents a study of the stability of mechanical systems, i.e. their free response when they are removed from their position of equilibrium after a temporary disturbance. After reviewing the main analytical methods of the dynamical stability of systems, it highlights the fundamental difference in nature between the phenomena of forced resonance vibration of mechanical systems subjected to an imposed excitation and instabilities that characterize their free response. It specifically develops instabilities arising from the rotor-structure coupling, instability of control systems, the self-sustained instabilities associated with the presence of internal damping and instabilities related to the fluid-structure coupling for fixed and rotating structures. For an original approach following the analysis of instability phenomena, the book provides examples of solutions obtained by passive or active methods.
This text deals with the behavior of polymers at surfaces and interfaces. Topics covered include the nature and properties of the surface of a polymer melt, the structure of interfaces among different polymers and between polymers and nonpolymers, the molecular basis of adhesion and the properties of polymers at liquid surfaces. Emphasis is placed on the underlying physical principles. It introduces statistical mechanics models of polymer behavior near interfaces, emphasizing theory that is applicable to experimental situations. Advanced undergraduates, graduate students and research workers in physics, chemistry and materials science with an interest in polymers will find this book of interest. |
![]() ![]() You may like...
VECTOR MECHANICS FOR ENGINEERS: STATICS…
Ferdinand Beer, E Johnston, …
Paperback
R2,005
Discovery Miles 20 050
|