![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > General
A textbook demonstrating the power of mathematics in solving practical, scientific, and technical problems through mathematical modelling techniques.
Option B is a priced contract with a bill of quantities where the risk of carrying out the work at the agreed prices being is borne by the contractor. This document contains all the core and secondary option clauses, the shorter schedule of cost components, and contract data, relevant to an option B contract. Construction Clients' Board endorsement of NEC3 The Construction Clients' Board (formerly Public Sector Clients' Forum) recommends that public sector organisations use the NEC3 contracts when procuring construction. Standardising use of this comprehensive suite of contracts should help to deliver efficiencies across the public sector and promote behaviours in line with the principles of Achieving Excellence in Construction.
SOLID STATE CHEMISTRY AND ITS APPLICATIONS A comprehensive treatment of solid state chemistry complete with supplementary material and full colour illustrations from a leading expert in the field. Solid State Chemistry and its Applications, Second Edition delivers an advanced version of West's classic text in solid state chemistry, expanding on the undergraduate Student Edition to present a comprehensive treatment of solid state chemistry suitable for advanced students and researchers. The book provides the reader with an up-to-date account of essential topics in solid state chemistry and recent developments in this rapidly developing field of inorganic chemistry. Significant updates and new content in this second edition include: A more extensive overview of important families of inorganic solids including spinels, perovskites, pyrochlores, garnets, Ruddlesden-Popper phases and many more New methods to synthesise inorganic solids, including sol-gel methods, combustion synthesis, atomic layer deposition, spray pyrolysis and microwave techniques Advances in electron microscopy, X-ray and electron spectroscopies New developments in electrical properties of materials, including high Tc superconductivity, lithium batteries, solid oxide fuel cells and smart windows Recent developments in optical properties, including fibre optics, solar cells and transparent conducting oxides Advances in magnetic properties including magnetoresistance and multiferroic materials Homogeneous and heterogeneous ceramics, characterization using impedance spectroscopy Thermoelectric materials, MXenes, low dimensional structures, memristors and many other functional materials Expanded coverage of glass, including metallic and fluoride glasses, cement and concrete, geopolymers, refractories and structural ceramics Overview of binary oxides of all the elements, their structures, properties and applications Featuring full color illustrations throughout, readers will also benefit from online supplementary materials including access to CrystalMaker(R) software and over 100 interactive crystal structure models. Perfect for advanced students seeking a detailed treatment of solid state chemistry, this new edition of Solid State Chemistry and its Applications will also earn a place as a desk reference in the libraries of experienced researchers in chemistry, crystallography, physics, and materials science.
Brings together in one place the fundamental theory and models, and the practical aspects of submicron particle engineering This book attempts to resolve the tricky aspects of engineering submicron particles by discussing the fundamental theories of frequently used research tools--both theoretical and experimental. The first part covers the Fundamental Models and includes sections on nucleation, growth, inter-molecular and inter-particle forces, colloidal stability, and kinetics. The second part examines the Modelling of a Suspension and features chapters on fundamental concepts of particulate systems, writing the number balance, modelling systems with particle breakage and aggregation, and Monte Carlo simulation. The book also offers plenty of diagrams, software, examples, brief experimental demonstrations, and exercises with answers. Engineering of Submicron Particles: Fundamental Concepts and Models offers a lengthy discussion of classical nucleation theory, and introduces other nucleation mechanisms like organizer mechanisms. It also looks at older growth models like diffusion controlled or surface nucleation controlled growth, along with new generation models like connected net analysis. Aggregation models and inter-particle potentials are touched upon in a prelude on intermolecular and surface forces. The book also provides analytical and numerical solutions of population balance models so readers can solve basic population balance equations independently. Presents the fundamental theory, practical aspects, and models of submicron particle engineering Teaches readers to write number balances for their own system of interest Provides software with open code for solution of population balance model through discretization Filled with diagrams, examples, demonstrations, and exercises Engineering of Submicron Particles: Fundamental Concepts and Models will appeal to researchers in chemical engineering, physics, chemistry, engineering, and mathematics concerned with particulate systems. It is also a good text for advanced students taking particle technology courses.
High-Performance Materials from Bio-based Feedstocks The latest advancements in the production, properties, and performance of bio-based feedstock materials In High-Performance Materials from Bio-based Feedstocks, an accomplished team of researchers delivers a comprehensive exploration of recent developments in the research, manufacture, and application of advanced materials from bio-based feedstocks. With coverage of bio-based polymers, the inorganic components of biomass, and the conversion of biomass to advanced materials, the book illustrates the research and commercial potential of new technologies in the area. Real-life applications in areas as diverse as medicine, construction, synthesis, energy storage, agriculture, packaging, and food are discussed in the context of the structural properties of the materials used. The authors offer deep insights into materials production, properties, and performance. Perfect for chemists, environmental scientists, engineers, and materials scientists, High-Performance Materials from Bio-based Feedstocks will also earn a place in the libraries of academics, industrial researchers, and graduate students with an interest in biomass conversion, green chemistry, and sustainability. A thorough introduction to the latest developments in advanced bio-based feedstock materials research Comprehensive explorations of a vast range of real-world applications, from tissue scaffolds and drug delivery to batteries, sorbents, and controlled release fertilizers Practical discussions of the organic and inorganic components of biomass and the conversion of biomass to advanced materials In-depth examinations of the structural properties of commercially and academically significant biomass materials For more information on the Wiley Series in Renewable Resources, visit www.wiley.com/go/rrs
This book presents the results of testing and operation experience of Novikov gearing. It gives the grounding, engineering techniques of geometry and strength analysis, definition of the gearing quality and adaptability with account of its manufacture and assembly errors. It outlines the recommendations on the reasonable assignment of basic rack profile parameters, accuracy ratings and design strength safety factors. Also, ways of load-bearing capacity essential increase are described and several original varieties of Novikov gearing are shown. The examples of engineering and computer-aided calculations of Novikov gearing according to the described techniques are given.
HEAT TRANSFER Provides authoritative coverage of the fundamentals of heat transfer, written by one of the most cited authors in all of Engineering Heat Transfer presents the fundamentals of the generation, use, conversion, and exchange of heat between physical systems. A pioneer in establishing heat transfer as a pillar of the modern thermal sciences, Professor Adrian Bejan presents the fundamental concepts and problem-solving methods of the discipline, predicts the evolution of heat transfer configurations, the principles of thermodynamics, and more. Building upon his classic 1993 book Heat Transfer, the author maintains his straightforward scientific approach to teaching essential developments such as Fourier conduction, fins, boundary layer theory, duct flow, scale analysis, and the structure of turbulence. In this new volume, Bejan explores topics and research developments that have emerged during the past decade, including the designing of convective flow and heat and mass transfer, the crucial relationship between configuration and performance, and new populations of configurations such as tapered ducts, plates with multi-scale features, and dendritic fins. Heat Transfer: Evolution, Design and Performance Covers thermodynamics principles and establishes performance and evolution as fundamental concepts in thermal sciences Demonstrates how principles of physics predict a future with economies of scale, multi-scale design, vascularization, and hierarchical distribution of many small features Explores new work on conduction architecture, convection with nanofluids, boiling and condensation on designed surfaces, and resonance of natural circulation in enclosures Includes numerous examples, problems with solutions, and access to a companion website Heat Transfer: Evolution, Design and Performance is essential reading for undergraduate and graduate students in mechanical and chemical engineering, and for all engineers, physicists, biologists, and earth scientists.
Fundamentals of Engineering Programming with C and Fortran, first published in 1998, is a beginner's guide to problem solving with computers which shows how to quickly prototype a program for a particular engineering application. The book's side by side coverage of C and Fortran, the predominant computer languages in engineering, is unique. It emphasizes the importance of developing programming skills in C while carefully presenting the importance of maintaining a good reading knowledge of Fortran. Beginning with a brief description of computer architecture, the book then covers the fundamentals of computer programming for problem solving. It devotes separate chapters to data types and operators, control flow, type conversion, arrays, and file operations. The final chapter contains case studies that illustrate particular elements of modeling and visualization. Also included are a number of appendices covering C and Fortran language summaries and other useful topics. This concise and accessible book can be used as a text for introductory-level undergraduate courses on engineering programming or as a self-study guide for practising engineers.
Fundamentals of Engineering Programming with C and Fortran, first published in 1998, is a beginner's guide to problem solving with computers which shows how to quickly prototype a program for a particular engineering application. The book's side by side coverage of C and Fortran, the predominant computer languages in engineering, is unique. It emphasizes the importance of developing programming skills in C while carefully presenting the importance of maintaining a good reading knowledge of Fortran. Beginning with a brief description of computer architecture, the book then covers the fundamentals of computer programming for problem solving. It devotes separate chapters to data types and operators, control flow, type conversion, arrays, and file operations. The final chapter contains case studies that illustrate particular elements of modeling and visualization. Also included are a number of appendices covering C and Fortran language summaries and other useful topics. This concise and accessible book can be used as a text for introductory-level undergraduate courses on engineering programming or as a self-study guide for practising engineers.
LED Packaging Technologies Up-to-date practitioner’s guide on LED packaging technologies, with application examples from relevant industries, historical insight, and outlook LED Packaging Technologies provides expert insight into current and future trends in LED packaging technologies, discussing the fundamentals of LED packaging technologies, from electrical contact design, thermal management and optical emission, and extraction, to manufacturing technologies, including the JEDEC testing standards, followed by accounts on the main applications of these LED packages in the automotive, consumer electronics, and lighting industries. LED Packaging Technologies includes information on: History of primitive lighting in human civilization to the invention of modern LEDs based lighting, and historic evolution of LED packaging technology Basic light emission and extraction technology in LED packages, covering package design impacting light emission and extraction Medical industry applications of LEDs, especially in healthcare treatments, such as in skin rejuvenation and wound healing and closures Quantum confinement phenomena and size-dependent optical properties of quantum dots, and the advancement of future quantum dot LEDs Covering the fundamentals, design, and manufacturing of LED packaging technology and assisting in removing some of the barriers in the development of LED packaging and new applications, LED Packaging Technologies is an essential source of information for engineers in the LED and lighting industries, as well as researchers in academia.
This book is an introduction to polymers and focuses on the synthesis, structure and properties of the individual molecules that constitute polymeric materials. It approaches polymeric materials from a molecular basis on the belief that there is a common core of knowledge and principles concerning polymer molecules that can be set out in an introductory work. Subjects treated include an introductory overview of synthesis, an introduction of the concept and definition of molecular weight and its distribution, experimental methods for measuring molecular weight, a more detailed view of polymerization including kinetics and mechanism, and the three-dimensional architecture of polymers as determined by conformation and stereochemistry. The statistical description of the conformational disorder of the molecules is covered and then built upon in treating rubber elasticity and polymer solutions.
This book is an introduction to polymers and focuses on the synthesis, structure and properties of the individual molecules that constitute polymeric materials. It approaches polymeric materials from a molecular basis on the belief that there is a common core of knowledge and principles concerning polymer molecules that can be set out in an introductory work. Subjects treated include an introductory overview of synthesis, an introduction of the concept and definition of molecular weight and its distribution, experimental methods for measuring molecular weight, a more detailed view of polymerization including kinetics and mechanism, and the three-dimensional architecture of polymers as determined by conformation and stereochemistry. The statistical description of the conformational disorder of the molecules is covered and then built upon in treating rubber elasticity and polymer solutions.
Written by some of the most talented young chemists in Europe, this
text covers most of the groundbreaking issues in chemistry. It
provides an account of the latest research results in European
chemistry based on a selection of leading young scientists
participating in the 2008 European Young Chemists Award
competition. The contributions range from self-organization to new
catalytic synthetic methodologies to organocatalysis. In addition,
the authors provide a current overview of their field of research
and a preview of future directions.
This book provides a comprehensive overview of ocean electronics, energy conversion, and instrumentation. As remote (satellite) sensing becomes increasingly important, this text provides readers with a solid background of wireless sensor networks and image-processing for oceans and ocean-related energy issues. Features: Focuses on wind energy, ocean wave, ocean tidal, and ocean thermal energy conversion Discusses the measurements of ocean monitoring parameters such as ocean color, sediment monitoring methods, surface currents, surface wind waves, wave height and wind speed, sea surface temperature, upwelling, wave power and the ocean floor Discusses sensors like scanner sensor systems, weather satellites sensors, synthetic aperture radar sensors, marine observation satellite(MOS) sensors, micro sensors for monitoring ocean acidification Includes material on underwater acoustics and underwater communication Assesses the environmental impact of generating energy from the ocean Explores the design of applications of marine electronics and oceanographic instruments
The two volumes that comprise this work provide a comprehensive guide and source book on the marine use of composite materials. The first volume, Fundamental Aspects, provides a rigorous development of theory. Areas covered include materials science, environmental aspects, production technology, structural analysis, finite-element methods, materials failure mechanisms and the role of standard test procedures. An appendix gives tables of the mechanical properties of common polymeric composites and laminates in marine use. The second volume, Practical Considerations, examines how the theory can be used in the design and construction of marine structures, including boats, submersibles, offshore structures and other deep-ocean installations.
Learn to model your own problems for predicting the properties of polymer-based composites Mechanics of Particle- and Fiber-Reinforced Polymer Nanocomposites: Nanoscale to Continuum Simulations provides readers with a thorough and up-to-date overview of nano, micro, and continuum approaches for the multiscale modeling of polymer-based composites. Covering nanocomposite development, theoretical models, and common simulation methods, the text includes a variety of case studies and scripting tutorials that enable readers to apply and further develop the supplied simulations. The book describes the foundations of molecular dynamics and continuum mechanics methods, guides readers through the basic steps required for multiscale modeling of any material, and correlates the results between the experimental and theoretical work performed. Focused primarily on nanocomposites, the methods covered in the book are applicable to various other materials such as carbon nanotubes, polymers, metals, and ceramics. Throughout the book, readers are introduced to key topics of relevance to nanocomposite materials and structures--supported by journal articles that discuss recent developments in modeling techniques and in the prediction of mechanical and thermal properties. This timely, highly practical resource: Explains the molecular dynamics (MD) simulation procedure for nanofiber and nanoparticle reinforced polymer composites Compares results of experimental and theoretical results from mechanical models at different length scales Covers different types of fibers and matrix materials that constitute composite materials, including glass, boron, carbon, and Kevlar Reviews models that predict the stiffness of short-fiber composites, including the self-consistent model for finite-length fibers, bounding models, and the Halpin-Tsai equation Describes various molecular modeling methods such as Monte Carlo, Brownian dynamics, dissipative particle dynamics, and lattice Boltzmann methods Highlights the potential of nanocomposites for defense and space applications Perfect for materials scientists, materials engineers, polymer scientists, and mechanical engineers, Mechanics of Particle- and Fiber-Reinforced Polymer Nanocomposites is also a must-have reference for computer simulation scientists seeking to improve their understanding of reinforced polymer nanocomposites.
This book contains detailed examples of application of the basic programs on mainframe computers to all phases of application of the system to machined engineering and medical examples. Its successor, Computer-Aided Sculpture, presents the essentials of the system concisely with programs, and their documentation, adapted to microcomputer technology. This is a concise introduction to the theory and program documentation of a powerful computer-aided general-shape machining system called Polyhedral NC (R).
This new book deals with analytical models of thermal stresses in isotropic and anisotropic composite materials. These models are represented by isotropic and anisotropic multi- and one-particle-(envelope)-matrix systems along with related thermal-stress induced phenomena, which are themselves represented by elastic energy fluctuations, thermal-stress strengthening, critical particle and envelope radii regarding a crack formation, including a mathematical description of the crack shape.
An excellent one-volume resource for understanding the most important current issues in the research and advances in materials science for environmental and energy technologies This proceedings volume contains a collection of 20 papers from the 2016 Materials Science and Technology (MS&T'16) meeting held in Salt Lake City, UT, from October 24-27 of that year. These conference symposia provided a forum for scientists, engineers, and technologists to discuss and exchange state-of-the-art ideas, information, and technology on advanced methods and approaches for processing, synthesis, characterization, and applications of ceramics, glasses, and composites. Topics covered include: the 8th International Symposium on Green and Sustainable Technologies for Materials Manufacturing Processing; Materials Issues in Nuclear Waste Management in the 21st Century; Construction and Building Materials for a Better Environment; Materials for Nuclear Applications and Extreme Environments; Nanotechnology for Energy, Healthcare, and Industry; and Materials for Processes for CO2 Capture, Conversion and Sequestration. Logically organized and carefully selected articles give insight into advances in materials science for environmental and energy technologies. Incorporates the latest developments related to advances in materials science for environmental and energy technologies Advances in Materials Science for Environmental and Energy Technologies VI: Ceramic Transactions Volume 262 is ideal for academics in mechanical and chemical engineering, materials and or ceramics, chemistry departments and for those working in government laboratories.
SMALL-ANGLE SCATTERING A comprehensive and timely volume covering contemporary research, practical techniques, and theoretical approaches to SAXS and SANS Small-Angle Scattering: Theory, Instrumentation, Data, and Applications provides authoritative coverage of both small-angle X-ray scattering (SAXS), small-angle neutron scattering (SANS) and grazing incidence small-angle scattering (GISAS) including GISAXS and GISANS. This single-volume resource offers readers an up-to-date view of the state of the field, including the theoretical foundations, experimental methods, and practical applications of small-angle scattering (SAS) techniques including laboratory and synchrotron SAXS and reactor/spallation SANS. Organized into six chapters, the text first describes basic theory, instrumentation, and data analysis. The following chapters contain in-depth discussion on various applications of SAXS and SANS and GISAXS and GISANS, and on specific techniques for investigating structure and order in soft materials, biomolecules, and inorganic and magnetic materials. Author Ian Hamley draws from his more than thirty years' experience working with many systems, instruments, and types of small-angle scattering experiments across most European facilities to present the most complete introduction to the field available. This book: Presents uniquely broad coverage of practical and theoretical approaches to SAXS and SANS Includes practical information on instrumentation and data analysis Offers useful examples and an accessible and concise presentation of topics Covers new developments in the techniques of SAXS and SANS, including GISAXS and GISANS Small-Angle Scattering: Theory, Instrumentation, Data, and Applications is a valuable source of detailed information for researchers and postgraduate students in the field, as well as other researchers using X-ray and neutron scattering to investigate soft materials, other nanostructured materials and biomolecules such as proteins.
Comprehensive resource covering fundamentals at the micro and nano scales, technical advances in micro- and nanorobots, and their biomedical applications Biomedical Micro- and Nanorobots in Disease Treatment: Design, Preparation, and Applications provides foundational knowledge on the subject in the fields of biomaterials, nanotechnology, and biomedicine, discusses the applications of micro- and nanorobots in the cardiovascular, cancer, ophthalmic, orthopedic, gastrointestinal, and nervous system disease treatment, and addresses their biosafety, autonomous motion behavior, and future development trends. The two highly qualified authors comprehensively and systematically introduces the concept source, definition, classification, autonomous movement behavior, and functionality of the technology, providing readers with new ideas, technologies, and methods for modern biomedical research, while also expanding new disease diagnosis, treatment principles, and possible application modes to paint a complete picture of the potential of the technology. Sample topics covered in Biomedical Micro- and Nanorobots in Disease Treatment include: Substrate selection between metal, inorganic, organic, natural, and hybrid materials, as well as driving systems based on biological components, external fields, and chemical reactions In vivo tracking technologies, including fluorescence imaging, magnetic resonance imaging (MRI), radionuclide and ultrasonic imaging, and other imaging methods Biosafety of micro- and nanorobot substrate through material composition, micro- and nanoscale influence, ultimate destiny, and genotoxicity Trending behavior mechanisms in magnetotactic, phototactic, and chemotaxis systems, and motion control through speed and direction control modes Study on therapeutic mechanism and application for various physiological diseases Summarizing research progress in the preparation, biosafety, functionality, and therapeutic effects of the technology, Biomedical Micro- and Nanorobots in Disease Treatment is an important and timely resource for biochemists, materials scientists, medicinal chemists, pharmaceutical chemists, bioengineers, biotechnologists, and the greater biotechnological industry.
Mixed-Valence Systems Comprehensive overview on the advanced development of mixed-valence chemistry Mixed-Valence Systems: Fundamentals, Synthesis, Electron Transfer, and Applications covers all topics related to the theory and experimental results of mixed-valence systems, including the design, synthesis, and applications of mixed-valence compounds containing inorganic, organometallic and organic redox-active centers. The text also covers the recent advances in mixed-valence chemistry, including the development of new mixed-valence systems, transition of mixed valency, better understanding of the spectral characteristics of intervalence charge transfer, and controllable electron transfer related to molecular electronics. In Mixed-Valence Systems, readers can expect to find detailed information on sample topics such as: Characterization and evaluation of mixed-valence systems, electron paramagnetic resonance spectroscopy, and electrochemical methods Optical analysis, important issues in mixed-valence chemistry, transition of mixed valency from localized to delocalized, and solvent control of electron transfer Theoretical background, potential energy surfaces from classical two-state model, and quantum description of the potential energy surfaces Reorganization energies, electronic coupling matrix element and the transition moments, generalized Mulliken-Hush theory, and analysis of the band shape of intervalence charge transfer Strengthening the relationship of mixed-valence electron transfer and molecular electronics, Mixed-Valence Systems is of immense value to researchers and professionals working in the field of electron transfer, molecular electronics, and optoelectronics.
From the basic theory of biomedical photonics to its application in the field of biomedical photonics, this book summarizes the current research hotspots, research ideas, applied technologies and methods, as well as the future development trend of biomedical photonics.
Comprehensive resource that provides insight into the purpose and design of experiments for adhesive bonding, joint design and strength prediction This book provides support for those practicing and teaching adhesive bonding and enables them to understand and design laboratorial courses and experiments. To aid in reader comprehension and information retention, a selected set of problems with corresponding solutions is included, which helps readers to develop a deep understanding of the subject matter. Written by five highly qualified professionals in the field of adhesive bonding, sample topics covered in the book include: Practical demonstrations of adhesive bonding, plus discussion on the advantages and disadvantages of the technique Detailed laboratorial activities that pertain to adhesive bonding The manufacturing of defect-free bonded joints The effects of geometry and materials properties in adhesive joint testing, surface preparation, joint design, and strength prediction This book is an essential resource for chemists, engineers, and students/instructors in related programs of study who wish to conduct better and more efficient experiments that pertain to adhesive bonding and related concepts.
Discover solvent-free approaches for the synthesis of nanocatalysts as well as various catalytic transformations in this unique one-stop resource Solvent-free methods have attracted wide attention in organic synthesis and catalysis as a promising approach towards "greener" and more sustainable chemical transformations. In this regard, nanocatalysis has seen particular growth in recent years. Solvent-Free Methods in Nanocatalysis gives an in-depth overview of nanocatalysts and their catalytic applications using solvent-free methods. After a brief introduction, it covers various synthetic techniques for the preparation of nanocatalysts and supports using solvent-free methods, e.g. ball-milling, microwave- and plasma-assisted methods. The book discusses in detail different catalyst classes, such as metal oxides, doped and functionalized nanocarbons, as well as nitride- and silica-based materials to help researchers to understand the efficiency and nature of these catalysts/supports based on their chemical structure. In the book, readers will also find: A brief account of the history, challenges, and recent advances in the field Detailed discussion of advantages and disadvantages of solvent-free techniques for nanocatalyst preparation Treatment of important solvent- and catalyst-free organic transformations (i.e. oxidation, coupling and multicomponent reactions) A chapter on supported ionic liquids for solvent-free catalysis Written by leading researchers in the field, Solvent-Free Methods in Nanocatalysis is a useful reference for researchers and students working in organic synthesis, catalysis, and nanomaterials science. |
![]() ![]() You may like...
Evidence For Jesus - Timeless Answers…
Josh McDowell, Sean McDowell
Paperback
R294
Discovery Miles 2 940
|