![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > General
Describes in one volume the data received during experiments on detonation in high explosive charges This book brings together, in one volume, information normally covered in a series of journal articles on high explosive detonation tests, so that developers can create new explosive technologies. It focuses on the charges that contain inert elements made of materials in which a sound velocity is significantly higher than a detonation velocity. It also summarizes the results of experimental, numerical, and theoretical investigations of explosion systems, which contain high modulus ceramic components. The phenomena occurring in such systems are described in detail: desensitization of high explosives, nonstationary detonation processes, energy focusing, and Mach stems formation. Formation of hypersonic flows of ceramic particles arising due to explosive collapse of ceramic tubes is another example of the issues discussed. Explosion Systems with Inert High Modulus Components: Increasing the Efficiency of Blast Technologies and Their Applications also looks at the design of explosion protective structures based on high modulus ceramic materials. The structural transformations, caused in metallic materials by the energy focusing, or by the impact of hypersonic ceramic jets are also discussed. These transformations include, but not limited to adiabatic shear banding, phase transformations, mechanical twinning, melting, boiling, and even evaporation of the impacted substrates. Specifically discusses in one volume the explosions involved with inert high modules components normally scattered over numerous journal articles Covers methods to increase energy output of a weak explosive by encasing it in a higher explosive Discusses the specifics of explosive systems containing high modulus inert elements Details the process of detonation and related phenomena, as well as the design of novel highly performant explosive systems Describes the transformation in materials impacted due to explosion in such systems Explosion Systems with Inert High Modulus Components will be of great interest to specialists working in fields of energy of the explosion and explosion safety as well as university staff, students, and postgraduate students studying explosion phenomena, explosive technologies, explosion safety, and materials science.
This series provides inorganic chemists and materials scientists with a forum for critical, authoritative evaluations of advances in every area of the discipline. Volume 58 continues to report recent advances with a significant, up-to-date selection of contributions by internationally-recognized researchers. The chapters of this volume are devoted to the following topics: - Tris(dithiolene) Chemistry: A Golden Jubilee- How to find an HNO needle in a (bio)-chemical Haystack - Photoactive Metal Nitrosyl and Carbonyl Complexes Derived from Designed Auxiliary Ligands: An Emerging Class of Photochemotherapeutics - Metal--Metal Bond-Containing Complexes as Catalysts for C--H Functionalization Iron Catalysis in Synthetic Chemistry- Reactive Transition Metal Nitride Complexes Suitable for inorganic chemists and materials scientists in academia, government, and industries including pharmaceutical, fine chemical, biotech, and agricultural.
The second edition of Electron Beam Analysis of Materials provides a concise and up-to-date overview of the most widely used electron beam instruments and techniques of microstructural analysis available today.
This book presents a systematic description of the electronic and physico-chemical properties of transition-metal carbides and nitrides. This is the first book devoted to the theoretical modelling of refractory carbides and nitrides and alloys based on them. It makes use of computational methods to calculate their spectroscopic, electric, magnetic, superconducting, thermodynamical and mechanical properties. Calculated results on the electronic band structure of ideal binary transition metal carbides and nitrides are presented, and the influence of crystal lattice defects, vacancies and impurities are studied in detail. Data available on chemical bonding and the properties of multi-component carbide- and nitride-based alloys, as well as their surface electronic structure, are described and compared with those of bulk crystals.
Model, analyze, and solve vibration problems, using modern computer
tools.
Nanotechnology has attracted attention of textile and polymer scientists and has been playing extraordinary role over the past few decades in the functional finishing of different textile materials. Nanoparticles due to their diverse functions have not only imparted flame retardant, UV-blocking, water repellent, self-cleaning, and antimicrobial properties to the textiles, but also have greater affinity for fabrics leading to an increase in durability of the functions. This book emphasizes recent approaches and strategies that are currently at operation to functionalize both natural and synthetic textile materials using diverse nanoparticles and their composites with polymers. The book concludes by paying attention towards removal of toxic chemicals using state-of-the-art nano-adsorbents. Main Topics 1. Textile dyeing using metallic nanoparticles 2. Metal oxide nanoparticles for multifunctional finishing 3. New approaches to produce UV protective textiles 4. Polymeric nanocomposites for antimicrobial finishing 5. Self-cleaning of textiles using advanced nanoparticles 6. Silver nanoparticles in dyeing and finishing applications 7. Zinc Oxide - prospects in textile industry 8. Titanium dioxide: Next generation photo-catalysts 9. Textile effluent using chitosan nanocomposites 10. Recent advances in remediation of textile effluents using nano-catalysts
This book focuses on the materials used for fuel cells, solar panels, and storage devices, such as rechargeable batteries. Fuel cell devices, such as direct methanol fuel cells, direct ethanol fuel cells, direct urea fuel cells, as well as biological fuel cells and the electrolytes, membranes, and catalysts used there are detailed. Separate chapters are devoted to polymer electrode materials and membranes. With regard to solar cells, the types of solar cells are detailed, such as inorganic-organic hybrid solar cells, solar powered biological fuel cells, heterojunction cells, multi-junction cells, and others. Also, the fabrication methods are described. Further, the electrolytes, membranes, and catalysts used there are detailed. The section that is dealing with rechargeable batteries explains the types of rechargeable devices, such as aluminum-based batteries, zinc batteries, magnesium batteries, and lithium batteries. Materials that are used for cathodes, anodes and electrolytes are detailed. The text focuses on the basic issues and also the literature of the past decade. Beyond education, this book may serve the needs of polymer specialists as well as other specialists, e.g., materials scientists, electrochemical engineers, etc., who have only a passing knowledge of these issues, but need to know more.
This book covers the recent advances in photovoltaics materials and their innovative applications. Many materials science problems are encountered in understanding existing solar cells and the development of more efficient, less costly, and more stable cells. This important and timely book provides a historical overview, but concentrates primarily on the exciting developments in the last decade. It includes organic and perovskite solar cells, photovoltaics in ferroelectric materials, organic-inorganic hybrid perovskite, materials with improved photovoltaic efficiencies as well as the full range of semiconductor materials for solar-to-electricity conversion, from crystalline silicon and amorphous silicon to cadmium telluride, copper indium gallium sulfide selenides, dye sensitized solar cells, organic solar cells, and environmentally-friendly copper zinc tin sulfide selenides.
Statistics is confusing, even for smart, technically competent people. And many students and professionals find that existing books and web resources don t give them an intuitive understanding of confusing statistical concepts. That is why this book is needed. Some of the unique qualities of this book are: Easy to Understand: Uses unique graphics that teach such as concept flow diagrams, compare-and-contrast tables, and even cartoons to enhance rememberability. Easy to Use: Alphabetically arranged, like a mini-encyclopedia, for easy lookup on the job, while studying, or during an open-book exam. Wider Scope: Covers Statistics I and Statistics II and Six Sigma Black Belt, adding such topics as control charts and statistical process control, process capability analysis, and design of experiments. As a result, this book will be useful for business professionals and industrial engineers in addition to students and professionals in the social and physical sciences. In addition, each of the 60+ concepts is covered in one or more articles. The 75 articles in the book are usually 5 7 pages long, ensuring that things are presented in bite-sized chunks. The first page of each article typically lists five Keys to Understanding which tell the reader everything they need to know on one page. This book also contains an article on Which Statistical Tool to Use to Solve Some Common Problems , additional Which to Use When articles on Control Charts, Distributions, and Charts/Graphs/Plots, as well as articles explaining how different concepts work together (e.g., how Alpha, p, Critical Value, and Test Statistic interrelate). ANDREW A. JAWLIK received his B.S. in Mathematics and his M.S. in Mathematics and Computer Science from the University of Michigan. He held jobs with IBM in marketing, sales, finance, and information technology, as well as a position as Process Executive. In these jobs, he learned how to communicate difficult technical concepts in easy - to - understand terms. He completed Lean Six Sigma Black Belt coursework at the IASSC - accredited Pyzdek Institute. In order to understand the confusing statistics involved, he wrote explanations in his own words and graphics. Using this material, he passed the certification exam with a perfect score. Those statistical explanations then became the starting point for this book.
This text concentrates upon the mathematical theory of plasticity and fracture as opposed to the physical theory of these fields, and is presented in the thermomechanical framework. It follows the macroscopic, phenomenological approach which proposes equations abstracted from generally accepted experimental facts, studies the adequacy of the consequences drawn from these equations to those facts and then provides useful tools for designers and engineers. The material is drawn from the author's graduate course in Europe and the United States and may be used to form the basis for similar graduate courses on plasticity and fracture. Many worked examples are presented and each chapter concludes with problems for students. The book should thus undoubtedly establish itself as a core text for both students and researchers.
Ever since the discovery of graphene, two-dimensional layered materials (2DLMs) have been the central tool of the materials research community. The reason behind their importance is their superlative and unique electronic, optical, physical, chemical and mechanical properties in layered form rather than in bulk form. The 2DLMs have been applied to electronics, catalysis, energy, environment, and biomedical applications. The following topics are discussed in the book's fifteen chapters: - The research status of the 2D metal-organic frameworks and the different techniques used to synthesize them. - 2D black phosphorus (BP) and its practical application in various fields. - Reviews the synthesis methods of MXenes and provides a detailed discussion of their structural characterization and physical, electrochemical and optical properties, as well as applications in catalysis, energy storage, environmental management, biomedicine, and gas sensing. - The carbon-based materials and their potential applications via the photocatalytic process using visible light irradiation. - 2D materials like graphene, TMDCs, few-layer phosphorene, MXene in layered form and their heterostructures. - The structure and applications of 2D perovskites. - The physical parameters of pristine layered materials, ZnO, transition metal dichalcogenides, and heterostructures of layered materials are discussed. - The coupling of graphitic carbon nitride with various metal sulfides and oxides to form efficient heterojunction for water purification. - The structural features, synthetic methods, properties, and different applications and properties of 2D zeolites. - The methods for synthesizing 2D hollow nanostructures are featured and their structural aspects and potential in medical and non-medical applications. - The characteristics and structural aspects of 2D layered double hydroxides (LDHs) and the various synthesis methods and role of LDH in non-medical applications as adsorbent, sensor, catalyst, etc. - The synthesis of graphene-based 2D layered materials synthesized by using top-down and bottom-up approaches where the main emphasis is on the hot-filament thermal chemical vapor deposition (HFTCVD) method. - The different properties of 2D h-BN and borophene and the various methods being used for the synthesis of 2D h-BN, along with their growth mechanism and transfer techniques. - The physical properties and current progress of various transition metal dichalcogenides (TMDC) based on photoactive materials for photoelectrochemical (PEC) hydrogen evolution reaction. - The state-of-the-art of 2D layered materials and associated devices, such as electronic, biosensing, optoelectronic, and energy storage applications.
This textbook is an accessible overview of the broad field of organic electrochemistry, covering the fundamentals and applications of contemporary organic electrochemistry. The book begins with an introduction to the fundamental aspects of electrode electron transfer and methods for the electrochemical measurement of organic molecules. It then goes on to discuss organic electrosynthesis of molecules and macromolecules, including detailed experimental information for the electrochemical synthesis of organic compounds and conducting polymers. Later chapters highlight new methodology for organic electrochemical synthesis, for example electrolysis in ionic liquids, the application to organic electronic devices such as solar cells and LEDs, and examples of commercialized organic electrode processes. Appendices present useful supplementary information including experimental examples of organic electrosynthesis, and tables of physical data (redox potentials of various organic solvents and organic compounds and physical properties of various organic solvents).
Thermal Energy Storage Systems and Applications Provides students and engineers with up-to-date information on methods, models, and approaches in thermal energy storage systems and their applications in thermal management and elsewhere Thermal energy storage (TES) systems have become a vital technology for renewable energy systems and are increasingly being used in commercial and industrial applications including space and water heating, cooling, and air conditioning. TES technology has the potential to be a sustainable, cost-effective, and eco-friendly approach for facilitating more effective use of thermal equipment and correcting the imbalance that can occur between the supply and demand of energy. The Third Edition of Thermal Energy Storage: Systems and Applications contains detailed coverage of new methodologies, models, experimental works, and methods in the rapidly growing field. Extensively revised and updated throughout, this comprehensive volume covers integrated systems with energy storage options, environmental impact and sustainability, design, analysis, assessment criteria, advanced tools in exergy and extended exergy, and more. New and expanded chapters address topics such as renewable energy systems in which thermal energy storage is essential, sensible and latent TES systems, and numerical modelling, simulation, and analysis of TES systems. Integrating academic research and practical information, this new edition: Discusses a variety of practical TES applications, their technical features, and potential benefits Explores recent developments and future directions in energy storage technologies Covers the latest generation of thermal storage systems and a wide range of applications Features new chapters, case studies, and chapter problems throughout the text Includes pertinent background information on thermodynamics, fluid flow, and heat transfer Contains numerous illustrative examples, full references, and appendices with conversion factors and thermophysical properties of various materials Thermal Energy Storage: Systems and Applications, Third Edition is the perfect textbook for advanced undergraduate and graduate courses in mechanical, chemical, and electrical engineering, and a highly useful reference for energy engineers and researchers.
This edited volume contains the selected papers presented at the scientific board meeting of the German Cluster of Excellence on "Integrative Production Technology for High-Wage Countries", held in November 2014. The topical structure of the book is clustered in six sessions: Integrative Production Technology, Individualised Production, Virtual Production Systems, Integrated Technologies, Self-Optimising Production Systems and Human Factors in Production Technology. The Aachen perspective on a holistic theory of production is complemented by conference papers from external leading researchers in the fields of production, materials science and bordering disciplines. The target audience primarily comprises research experts and practitioners in the field but the book may also be beneficial for graduate students.
This book provides readers with a one-stop entry into the chemistry of varied hybrids and applications, from a molecular synthetic standpoint - Describes introduction and effect of organic structures on specific support components (carbon-based materials, proteins, metals, and polymers).- Chapters cover hot topics including nanodiamonds, nanocrystals, metal-organic frameworks, peptide bioconjugates, and chemoselective protein modification- Describes analytical techniques, with pros and cons, to validate synthetic strategies - Edited by internationally-recognized chemists from different backgrounds (synthetic polymer chemistry, inorganic surfaces and particles, and synthetic organic chemistry) to pull together diverse perspectives and approaches
The book focusses on the recent technical research accomplishments in the area of polyethylene-based blends, composites and nanocomposites by looking at the various aspects of processing, morphology, properties and applications. In particular, the book details the important developments in areas such as the structure-properties relationship of polyethylene; modification of polyethylene with radiation and ion implantation processes; stabilization of irradiated polyethylene by the introduction of antioxidants; reinforcement of polyethylene through carbon-based materials as additives; characterization of carbon-based polyethylenes composites, polyethylene-based blends with thermoplastic and thermoset; characterization of polyethylene-based thermoplastic and thermoset blends; polyethylene-based blends with natural rubber and synthetic rubber; characterization of polyethylene-based natural rubber and synthetic rubber blends; characterization of polyethylene-based composites.
A strategic and operational guide to using 3D printing to drive value in the supply chain--featuring case studies and illustrated examples from across industries After many years as a tool for designers, 3D printing today promises to revolutionize supply chains. Cut through the hype and hyperbole, and it becomes clear that it offers unprecedented potential to redesign supply chain models, simplifying and shrinking them, enabling previously unimaginable designs to be produced where they are most needed. However, adopting it is a strategic endeavor, one that involves the consideration of several wider implications. This book goes beyond touting the latest technological advances or listing the many wonderful things that 3D printing is being used to make. It teaches readers what is important about 3D printing, why they need to prepare for its emergence today, and how they can go about adopting it. Supercharg3d: How 3D Printing Will Drive Your Supply Chain shows readers how to drive value in their supply chain by supercharging it--giving it more power--with 3D printing. Aimed at being a first reference for those in businesses who make strategic decisions on operations and supply chain matters, it takes a pragmatic position, balancing the opportunities that 3D printing presents with the reality of the limitations that it continues to have, so that readers can make the best decisions possible. Strategic guide that covers 3D printing and its implications in the supply chain Operational guidance and best practices for how and when 3D printing can be adopted Identification of 3D printing's impacts on the individual SCOR(R) supply chain elements Features new, transformative supply chain models that are enabled by 3D printing Includes case studies and illustrated examples from diverse industries including aerospace (Airbus), energy (Shell), consumer goods (Nike), medical (Align Technology) and transportation (Deutsche Bahn) Supercharg3d: How 3D Printing Will Drive Your Supply Chain is the go-to book for operations and supply chain decision makers in manufacturing, engineering and technology companies looking to incorporate the technology into their business operations.
Offers a theoretical and practical guide to the communication and navigation of autonomous mobile robots and multi-robot systems This book covers the methods and algorithms for the navigation, motion planning, and control of mobile robots acting individually and in groups. It addresses methods of positioning in global and local coordinates systems, off-line and on-line path-planning, sensing and sensors fusion, algorithms of obstacle avoidance, swarming techniques and cooperative behavior. The book includes ready-to-use algorithms, numerical examples and simulations, which can be directly implemented in both simple and advanced mobile robots, and is accompanied by a website hosting codes, videos, and PowerPoint slides Autonomous Mobile Robots and Multi-Robot Systems: Motion-Planning, Communication and Swarming consists of four main parts. The first looks at the models and algorithms of navigation and motion planning in global coordinates systems with complete information about the robot's location and velocity. The second part considers the motion of the robots in the potential field, which is defined by the environmental states of the robot's expectations and knowledge. The robot's motion in the unknown environments and the corresponding tasks of environment mapping using sensed information is covered in the third part. The fourth part deals with the multi-robot systems and swarm dynamics in two and three dimensions. Provides a self-contained, theoretical guide to understanding mobile robot control and navigation Features implementable algorithms, numerical examples, and simulations Includes coverage of models of motion in global and local coordinates systems with and without direct communication between the robots Supplemented by a companion website offering codes, videos, and PowerPoint slides Autonomous Mobile Robots and Multi-Robot Systems: Motion-Planning, Communication and Swarming is an excellent tool for researchers, lecturers, senior undergraduate and graduate students, and engineers dealing with mobile robots and related issues.
Biomimetic materials are basically synthetic materials or man-made materials which can mimic or copy the properties of natural materials. Scientists have created a revolution by mimicking natural polymers through semi-synthetic or fully synthetic methods. There are different methods to mimic a material, such as copying form and shape, copying the process, and finally mimicking at an ecosystem level. This book comprises a detailed description of the materials used to synthesize and form biomimetic materials. It provides the materials in a way that will be far more conventional and easier to understand. The editors have compiled the book so that it can be used in all areas of research, and it shows the properties, preparations, and applications of biomimetic materials currently being used.Â
This is a modern introductory book on sensors, combining underlying theory with bang up to date topics such as nanotechnology. The text is suitable for graduate students and research scientists with little background in analytical chemistry. It is user-friendly, with an accessible theoretical approach of the basic principles, and references for further reading. The book covers up-to-date advances in the sensor field, e.g. nanotechnology and quantum dots. It includes calculation exercises and solutions, and the accompanying website contains Powerpoint slides.
Fiesers' Reagents for Organic Synthesis provides an up-to-date, A-to-Z listing of reagents cited in synthetic literature. - Covers, in volume 29, chemical literature and methodologies from 2013-mid 2014 - Features entries with concise descriptions, illustrations of chemical reactions, selected examples of applications - Includes author indexes and subject indexes - Offers practical information on reagents' usefulness, where to find complete details
An introduction to nonlinear and continuous systems using bond graph methodology, this textbook gives readers the foundations they need to apply physical system models in practice Giving an integrated and uniform approach to system modeling, analysis and control, this book uses realistic examples to link empirical, analytical and numerical approaches. This introduction gives readers the essential foundations towards more advanced and practical topics in systems engineering. Rather than using only a linear modeling methodology, this book also uses nonlinear modeling approaches. This is a very useful aspect of the book, since engineers are often faced with modeling nonlinear physical systems. The authors approach the topic using bond graph methodology, a well known and powerful approach for the modeling and analysis of multi-energy domain systems at the physical level. With a strong focus on the fundamentals, the authors ensure that the various modeling approaches available are outlined, always with implementation in mind. Beginning by covering core topics which engineering students will have been exposed to in their first two years of study, the next sections introduce systematic modeling development using a bond graph approach followed by analysis. The later chapters expand on the reader s foundational understanding of systems, helping to begin dealing with more complex phenomena. This includes making decisions about what to model and how much complexity is needed for a particular problem. * Includes tables summarizing fundamental modeling elements and principles, sets of problems and case studies of real-world applications * Emphasizes simulation throughout the book as a means to enable reader understanding * Topics introduced include: mechanical, electrical, thermal, fluid, magnetic and chemical systems * Gives insight into controls problems by building a better understanding of the physical system and developing tools and methods that enable users to modify models
In the last few years, a significant increase in applications of MMCs has taken place, particularly in the areas of automotive, aerospace, electronics, and recreation. These include continuous fiber reinforced MMCs for cables in power transmission, high temperature superconducting wires, particulate MMCs in civilian aircraft and automotive applications, and high volume fraction, high thermal conductivity substrates for electronic packaging. Nevertheless, as with any novel material systems, there is a lack of fundamental understanding on the part of practicing engineers and designers. This book would seek to address these issues, in a thorough and cohesive manner, as well as to provide students and scientists with a basic understanding of MMCs. This book will emphasize the synergistic relationships among processing, structure, and properties of metal matrix composites.
Biobased Adhesives Unique and comprehensive book edited by acknowledged leaders on biobased adhesives that will replace petroleum-based adhesives. This book contains 23 chapters covering the various ramifications of biobased adhesives. The chapters are written by world-class scientists and technologists actively involved in the arena of biobased adhesives. The book is divided into three parts: Part 1: Fundamental Aspects; Part 2: Classes of Biobased Adhesives; and Part 3: Applications of Biobased Adhesives. Topics covered include: an introduction to biobased adhesives; adhesion theories and adhesion and surface issues with biobased adhesives; chemistry of adhesives; biorefinery products as biobased raw materials for adhesives; naturally aldehyde-based thermosetting resins; natural crosslinkers; curing and adhesive bond strength development in biobased adhesives; mimicking nature; bio-inspired adhesives; protein adhesives; carbohydrates as adhesives; natural polymer-based adhesives; epoxy adhesives from natural materials; biobased polyurethane adhesives; nanocellulose-modified adhesives; debondable, recyclable, and biodegradable biobased adhesives; 5-Hydroxymethylfurfural-based adhesives; adhesive precursors from tree-derived naval stores; and applications in various diverse arenas such as wood bonding, controlled drug delivery, and wearable bioelectronics. Audience This book will interest materials scientists, adhesionists, polymer chemists, marine biologists, food and agriculture scientists, and environmentalists. R&D personnel in a slew of wide-ranging industries such as aviation, shipbuilding, railway, automotive, packaging, construction, wood bonding, and composites should find this book a repository of current and much-needed information.
|
You may like...
Human Resource Development - A Concise…
Ronan Carbery, Christine Cross
Paperback
Plant Nutrition and Food Security in the…
Vinay Kumar, Ashish Kumar Srivastava, …
Paperback
R4,010
Discovery Miles 40 100
Contemporary Issues in Human Resource…
C. Brewster, P. Holland, …
Paperback
(2)R1,447 Discovery Miles 14 470
|