![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > General
This book is a good introductorywork to nanoparticle technology.
It consists of nine complementary chapters that can be
readindependently. This book covers promising nanoparticles
fabrication technologies with a focus on scalable processes.
Integration of nanoparticles into 2D and 3D structures are covered
in detail. The most promising applications of nanoparticles in the
energy, optoelectronic and biomedical sectors are summarized and
discussed. Current issues and challenges related to nanoparticles
production and utilisation are also discussed in the book.
Constrained motion is of paramount importance in the design and analysis of mechanical systems and central to the study of analytical dynamics. The problem of constrained motion was first posed over two hundred years ago, and it has been worked on vigorously ever since. This book offers a fresh approach to the subject. Eminently readable, it is written as an introduction to analytical dynamics, with emphasis on fundamental concepts in mechanics. The connection between generalized inverses of matrices and constrained motion is a central theme. The book begins with a description of the motion of a particle subjected to holonomic and nonholonomic constraints and presents explicit equations of motion. Examples are provided throughout the book, and carefully formulated problems at the end of each chapter reinforce the material covered. This computationally appealing approach will be useful to students in engineering and the applied sciences.
The IEEE Press is pleased to reissue this essential book for understanding the basis of modern magnetic materials. Diamagnetism, paramagnetism, ferromagnetism, ferrimagnetism, and antiferromagnetism are covered in an integrated manner -- unifying subject matter from physics, chemistry, metallurgy, and engineering. Magnetic phenomena are discussed both from an experimental and theoretical point of view. The underlying physical principles are presented first, followed by macroscopic or microscopic theories. Although quantum mechanical theories are given, a phenomenological approach is emphasized. More than half the book is devoted to a discussion of strongly coupled dipole systems, where the molecular field theory is emphasized. "The Physical Principles of Magnetism" is a classic "must read" for anyone working in the magnetics, electromagnetics, computing, and communications fields.
Pham Mau Quam: Problemes mathematiques en hydrodynamique relativiste.- A. Lichnerowicz: Ondes de choc, ondes infinitesimales et rayons en hydrodynamique et magnetohydrodynamique relativistes.- A.H. Taub: Variational principles in general relativity.- J. Ehlers: General relativistic kinetic theory of gases.- K. Marathe: Abstract Minkowski spaces as fibre bundles.- G. Boillat: Sur la propagation de la chaleur en relativite.
The book is devoted to an up-dated exploratory survey of results concerning elastic cusped shells, plates, and beams and cusped prismatic shell-fluid interaction problems. It contains some up to now non-published results as well. Mathematically the corresponding problems lead to non-classical, in general, boundary value and initial-boundary value problems for governing degenerate elliptic and hyperbolic systems in static and dynamical cases, respectively. Its uses two fundamentally different approaches of investigation: 1) to get results for two-dimensional and one-dimensional problems from results of the corresponding three-dimensional problems and 2) to investigate directly governing degenerate and singular systems of 2D and 1D problems. In both the cases, it is important to study relation of 2D and 1D problems to 3D problems.
Noise pollution around airports, trains, and industries increasingly attracts environmental concern and regulation. Designers and researchers have intensified the use of large-eddy simulation (LES) for noise reduced industrial design and acoustical research. This book, written by 30 experts, presents the theoretical background of acoustics and of LES, followed by details about numerical methods, e.g. discretization schemes, boundary conditions, coupling aspects. Industrially relevant, hybrid RANS/LES techniques for acoustic source predictions are presented in detail. Many applications are featured ranging from simple geometries for mixing layers and jet flows to complex wing and car geometries. Selected applications include recent scientific investigations at industrial and university research institutions. Presently one can't offer perfect solution methodologies that address all relevant applications, however the book presents a state of the art collection of methods, tools and evaluation methodologies. The advantages and weaknesses of both the commercial and the research methodologies are carefully presented.
A proven approach to the conceptual understanding of engineering mechanics that will help you improve your problem-solving skills. Engineering Mechanics: Statics SI Units, 15th edition, Global edition, excels in providing a clear and thorough presentation of the theory and application of engineering mechanics. Ideal for students who study Statics courses, this text will empower you to succeed by drawing upon Professor Hibbeler's decades of everyday classroom experience and knowledge on student learning. A variety of new video types are available in this latest edition. The author carefully developed each video to expertly demonstrate how to solve problems, modelling the best way to reach a solution and giving you extra opportunities to practice honing your problem-solving skills. Further key features include: Comprehensive summaries of key concepts discussed in the text. Additional figures, animations and photos to enhance your learning. A large variety of problems with varying levels of difficulty, stressing practical, realistic situations. An expanded Answer Section in the back of the book - now including additional information related to the solution of select Fundamental and Review Problems. Also available with Mastering Engineering with Pearson eText Mastering (R) is the teaching and interactive learning platform that allows instructors to reach every student with powerful self-study material and assessments, helping them become active participants in their learning, and achieve better results. If you would like to purchase both the physical text and Mastering (R) Engineering, search for: 9781292444031 Engineering Mechanics: Statics SI Units, 15th edition, Global edition plus Mastering Engineering with Pearson eText. Package consists of: 9781292444048 Engineering Mechanics: Statics SI Units, 15th edition, Global edition 9781292444000 Engineering Mechanics: Statics SI Units, 15th edition, Global edition Mastering (R) Engineering 9781292444017 Engineering Mechanics: Statics SI Units, 15th edition, Global edition with Pearson eText Mastering (R) Engineering is not included. Students, if Mastering is a recommended/mandatory component of the course, please ask your instructor for the correct ISBN. Mastering should only be purchased when required by an instructor. Instructors, contact your Pearson representative for more information. P.A. Blythe: Non-linear far-field theories in relaxing gas flows.- Meixner: Thermodynamics of deformable materials.- A.C. Pipkin: Non-linear phenomena in continua.- R.S. Rivlin: An introduction to non-linear continuum mechanics.- G.F. Smith: The generation of integrity bases.
This book provides an in-depth treatment of the instrumentation, physical bases and applications of X-ray photoelectron spectroscopy (XPS) and static secondary ion mass spectroscopy (SSIMS) with a specific focus on the subject of polymeric materials. XPS and SSIMS are widely accepted as the two most powerful techniques for polymer surface chemical analysis, particularly in the context of industrial research and problem solving. In this book, the techniques of XPS and SSIMS are described and in each case the author explains what type of information may be obtained. The book also includes details of case studies emphasising the complementary and joint application of XPS and SSIMS in the investigation of polymer surface structure and its relationship to the properties of the material. This book will be of value to academic and industrial researchers interested in polymer surfaces and surface analysis.
MATERIALS AND DEMATERIALIZATION World-renowned scientist Vaclav Smil examines a critical topic in the research and policy domain of sustainable resource use Over the course of time, the modern world has become dependent on unprecedented flows of materials. Now even the most efficient production processes and the highest practical rates of recycling may not be enough to result in dematerialization rates that would be high enough to negate the rising demand for materials generated by continuing population growth and rising standards of living. Materials and Dematerialization considers the principal materials used throughout history, from wood and stone, through to metals, alloys, plastics and silicon, describing their extraction and production as well as their dominant applications. The evolving productivities of material extraction, processing, synthesis, finishing and distribution, and the energy costs and environmental impact of rising material consumption are examined in detail, along with the relationship between socio-economic development and resource use, including major technological and innovation aspects. The book concludes with an outlook for the future, discussing the prospects for dematerialization, potential constraints on materials, and an updated appraisal of material requirements and prospects during the coming decades. Building on the success of his 2013 book, Vaclav Smil has thoroughly revised this landmark text to highlight advances that have taken place over the last decade, including a thorough review of statistics and references to 2022. This updated edition also includes new content to explicitly address material for global energy transition and for securing food for a still growing global population. Praise for the 1st edition “Vaclav Smil keeps turning out amazing books. Making the Modern World, I just finished, and it’s pretty fantastic.†(Interview with Bill Gates, January 2014)
This 1997 volume provides an overview of statistical energy analysis and its applications in structural vibration. Statistical energy analysis is a powerful method for predicting and analysing the vibrational behaviour of structures. Its main use is for structures that can be considered as assemblies of interconnected subsystems which are subject to medium to high frequency vibration sources. This volume brings together nine articles by experts from around the world. The opening chapter gives an introduction and overview of the technique describing its key successes, potential and limitations. Following chapters look in more detail at a selection of cases and examples which together illustrate the scope and power of the technique. This book is based on a Royal Society Philosophical Transactions issue under the title 'Statistical Energy Analysis', but an extra chapter, by Chohan, Price, Keane and Beshara, discussing nonconservatively coupled systems is included in this edition.
Material Characterization using Electron Holography Exploration of a unique technique that offers exciting possibilities to analyze electromagnetic behavior of materials Material Characterization using Electron Holography addresses how the electromagnetic field can be directly visualized and precisely interpreted based on Maxwell's equations formulated by special relativity, leading to the understanding of electromagnetic properties of advanced materials and devices. In doing so, it delivers a unique route to imaging materials in higher resolution. The focus of the book is on in situ observation of electromagnetic fields of diverse functional materials. Furthermore, an extension of electron holographic techniques, such as direct observation of accumulation and collective motions of electrons around the charged insulators, is also explained. This approach enables the reader to develop a deeper understanding of functionalities of advanced materials. Written by two highly qualified authors with extensive first-hand experience in the field, Material Characterization using Electron Holography covers topics such as: Importance of electromagnetic fields and their visualization, Maxwell's equations formulated by special relativity, and de Broglie waves and wave functions Outlines of general relativity and Einstein's equations, principles of electron holography, and related techniques Simulation of holograms and visualized electromagnetic fields, electric field analysis, and in situ observation of electric fields Interaction between electrons and charged specimen surfaces and interpretation of visualization of collective motions of electrons For materials scientists, analytical chemists, structural chemists, analytical research institutes, applied physicists, physicists, semiconductor physicists, and libraries looking to be on the cutting edge of methods to analyze electromagnetic behavior of materials, Material Characterization using Electron Holography offers comprehensive coverage of the subject from authoritative and forward-thinking topical experts.
In the automotive industry, a Control Engineer must design a unique control law that is then tested and validated on a single prototype with a level of reliability high enough to to meet a number of complex specifications on various systems. In order to do this, the Engineer uses an experimental iterative process (Trial and Error phase) which relies heavily on his or her experience. This book looks to optimise the methods for synthesising servo controllers ny making them more direct and thus quicker to design. This is achieved by calculating a final controller to directly tackle the high-end system specs.
Architects are constantly looking for new methods to create large indoor spaces unhindered by columns and other supports. Tensile and cable-strut structures are one method of producing such spaces. They also enable the creation of different shaped spaces allowing architects more scope for innovation. Free-standing Tension Structures: From Tensegrity Systems to Cable-strut Systems provides the background engineering needed to produce these wonderful structures. Providing a complete background to the underlying structural engineering theories of tensegrity, this book will prove invaluable for all architects and engineers working on tensile structures.
This is nothing less than an essential text in what is a new and growing discipline. Electromagnetic modeling and computations is expanding as a result of the steadily increasing demand for designing electrical devices, modeling electromagnetic materials, and simulating electromagnetic fields in nanoscale structures. The aim of this volume is to bring together prominent worldwide experts to review state-of-the-art developments and future trends of modeling and computations in electromagnetics.
Sealing is an age-old problem that dates back to our earliest attempts to create a more comfortable living environment. Prehistoric people used natural sealants such as earth, loam, grass, and reeds to protect the interior of their homes against the weather. Today s applications extend to a myriad of uses. The Handbook of Sealant Technology provides an in-depth examination of sealants, reviewing their historical developments and fundamentals, adhesion theories and properties, and today s wide range of applications. Featuring contributions from international academic and industry experts, this comprehensive, illustrated reference explores:
As technology continues to develop, the potential for sealant use grows exponentially. This valuable reference guide provides a window on the past and offers insight into the extent of future possibilities in a host of industries.
This book introduces the basic tools used in the mechanical design of microsystems, the fabrication methods for these systems, and several applications of this technology. The links between micro- and nanotechnologies are also discussed and light is shed on the potential applications of microsystems to nano-scale manipulation of matter. The book is a systematic, updated and quite complete treatise of its subject.
The processes of freezing and melting were present at the beginnings of the Earth and continue to dominate the natural and industrial worlds. The solidification of a liquid or the melting of a solid involves a complex interplay of many physical effects. This book systematically presents the field of continuum solidification theory based on instability phenomena. An understanding of the physics is developed by using examples of increasing complexity with the object of creating a deep physical insight applicable to more complex problems. Applied mathematicians, engineers, physicists, and materials scientists will all find this volume of interest.
This volume contains papers read at the 7th International Workshop entitled "Intelligent Agents: Decision-Support and Planning", Udine, Italy, Sep 30th - Oct 2nd, 2004. All papers were reviewed after they were presented, and revised for final publication. As its preceding ones, this workshop took place under the auspices of the International School for the Synthesis of Expert Knowledge (ISSEK) and was held in the picturesque Palazzo del Torso of the Centre International des Sciences Mecaniques (CISM), Udine, see picture below. CISM location " Palazzo del Torso " The workshop was jointly organised by Prof. G. Delia Riccia (University of Udine), Dr. D. Dubois ( CNRS and University of Toulouse III), Prof. R. Kruse (University of Magdeburg), and Prof. H .- J. Lenz (Free University Berlin). As the workshop was an invitational one, there was no need for a call for contributed papers. Contrarily, the four organisers recruited research workers from Europe who have had an impact in the last decade on "Intelligent Agents: Decision-Support and Planning".
From engineering fluid mechanics to power systems, information coding theory and other fields, entropy is key to maximizing performance in engineering systems. It serves a vital role in achieving the upper limits of efficiency of industrial processes and quality of manufactured products. Entropy based design (EBD) can shed new light on various flow processes, ranging from optimized flow configurations in an aircraft engine to highly ordered crystal structures in a turbine blade. Entropy Based Design of Fluid Engineering Systems provides an overview of EBD as an emerging technology with applications to aerospace, microfluidics, heat transfer, and other disciplines. The text extends past analytical methods of Entropy Generation Minimization to numerical simulations involving more complex configurations and experimental measurement techniques. The book begins with an extensive development of basic concepts, including the mathematical properties of entropy and exergy, as well as statistical and numerical formulations of the second law. It then goes on to describe topics related to incompressible flows and the Second Law in microfluidic systems. The authors develop computational and experimental methods for identifying problem regions within a system through the local rates of entropy production. With these techniques, designers can use EBD to focus on particular regions where design modifications can be made to improve system performance. Numerous case studies illustrate the concepts in each chapter, and cover an array of applications including supersonic flows, condensation and turbulence. A one-of-a-kind reference, Entropy Based Design of Fluid Engineering Systems outlines new advancesshowing how local irreversibilities can be detected in complex configurations so that engineering devices can be re-designed locally to improve overall performance.
This book describes the forecasting and risk evaluation of tsunamis by tectonic motion, land slides, explosions, run-up, and maps the tsunami sources in the world's oceans. It presents stochastic Monte-Carlo simulations and focusing mechanisms for rogue waves, nonlinear wave models, breather formulas, and the kinematics of the Draupner wave. Coverage also reveals the full story about the discovery of the very large oceanic internal waves.
Theories of surface waves develop since the end of XIX century and many fundamental problems like existence, phase and group velocities, attenuation (quality factor), mode conversion, etc. have been, in part successfully, solved within the framework of such simple models as ideal fluids^ or linear elasticity. However, a sufficiently complete presentation of this subject, particularly for solids, is still missing in the literature. The sole exception is the book of I. A. Viktorov^ which contains an extensive discussion of fundamental properties of surface waves in homogeneous and stratified linear elastic solids with particular emphasis on contributions of Russian scientists. Unfortunately, the book has never been translated to English and its Russian version is also hardly available. Practical applications of surface waves develop intensively since a much shorter period of time than theories even though the motivation of discoverers of surface waves such as Lord Rayleigh stems from their appearance in geophysics and seismology. Nowadays the growing interest in practical applications of surface waves stem from the following two main factors: surface waves are ideal for developing relatively cheap and convenient methods of nondestructive testing of various systems spanning from nanomaterials (e.g.
Many problems in theoretical economics are mathematically formalized as dynam ical systems of difference and differential equations. In recent years a truly open approach to studying the dynamical behavior of these models has begun to make its way into the mainstream. That is, economists formulate their hypotheses and study the dynamics of the resulting models rather than formulating the dynamics and studying hypotheses that could lead to models with such dynamics. This is a great progress over using linear models, or using nonlinear models with a linear approach, or even squeezing economic models into well-studied nonlinear systems from other fields. There are today a number of economic journals open to publishing this type of work and some of these have become important. There are several societies which have annual meetings on the subject and participation at these has been growing at a good rate. And of course there are methods and techniques avail able to a more general audience, as well as a greater availability of software for numerical and graphical analysis that makes this type of research even more excit ing. The lecturers for the Advanced School on Nonlinear Dynamical Systems in Economics, who represent a wide selection of the research areas to which the the ory has been applied, agree on the importance of simulations and computer-based analysis. The School emphasized computer applications of models and methods, and all contributors ran computer lab sessions."
This course with 6 lecturers intends to present a systematic survey of recent re search results of well-known scientists on error-controlled adaptive finite element methods in solid and structural mechanics with emphasis to problem-dependent concepts for adaptivity, error analysis as well as h- and p-adaptive refinement techniques including meshing and remeshing. Challenging applications are of equal importance, including elastic and elastoplastic deformations of solids, con tact problems and thin-walled structures. Some major topics should be pointed out, namely: (i) The growing importance of goal-oriented and local error estimates for quan tities of interest-in comparison with global error estimates-based on dual finite element solutions; (a) The importance of the p-version of the finite element method in conjunction with parameter-dependent hierarchical approximations of the mathematical model, for example in boundary layers of elastic plates; (Hi) The choice of problem-oriented error measures in suitable norms, consider ing residual, averaging and hierarchical error estimates in conjunction with the efficiency of the associated adaptive computations; (iv) The importance of implicit local postprocessing with enhanced test spaces in order to get constant-free, i. e. absolute-not only relative-discretizati- error estimates; (v) The coupling of error-controlled adaptive discretizations and the mathemat ical modeling in related subdomains, such as boundary layers. The main goals of adaptivity are reliability and efficiency, combined with in sight and access to controls which are independent of the applied discretization methods. By these efforts, new paradigms in Computational Mechanics should be realized, namely verifications and even validations of engineering models. |
You may like...
Advances in Applied Mechanics, Volume 41
Erik van der Giessen, H. Aref
Hardcover
R4,666
Discovery Miles 46 660
The Mechanics of Constitutive Modeling
Niels Saabye Ottosen, Matti Ristinmaa
Hardcover
R5,384
Discovery Miles 53 840
VECTOR MECHANICS FOR ENGINEERS: STATICS…
Ferdinand Beer, E Johnston, …
Paperback
R1,946
Discovery Miles 19 460
Developments in Surface Contamination…
Rajiv Kohli, K.L. Mittal
Hardcover
R5,597
Discovery Miles 55 970
|