![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > General
The book presents mathematical and mechanical aspects of the theory of plates and shells, applications in civil, aero-space and mechanical engineering, as well in other areas. The focus relates to the following problems:* comprehensive review of the most popular theories of plates and shells,* relations between three-dimensional theories and two-dimensional ones,* presentation of recently developed new refined plates and shells theories (for example, the micropolar theory or gradient-type theories),* modeling of coupled effects in shells and plates related to electromagnetic and temperature fields, phase transitions, diffusion, etc.,* applications in modeling of non-classical objects like, for example, nanostructures,* presentation of actual numerical tools based on the finite element approach.
Professional engineers engaged in the design and structural analysis of plastic components will appreciate this ground-breaking work, which uniquely applies the stress category approach to plastics materials. Written in an engaging, easy-to-read style, this reference offers a comprehensive discussion of various stress categories utilizing over 150 annotated, instructive examples. An overview of the theory of elasticity is presented along with techniques governing plastics design. From simple press-fits to matrix structural analysis, the concept of stress category analysis is introduced and utilized to discuss a wide range of practical problems more compactly. What to do with computed stress is the most pressing issue addressed in Applied Stress Analysis of Plastics, as Krishnamachari presents fresh methodologies to deal with these problems effectively. Stressing understanding over theory, Applied Stress Analysis of Plastics makes the perfect desktop reference for design and test engineers, or as an intermediate textbook for students.
A guide to two-phase heat transfer theory, practice, and applications Designed primarily as a practical resource for design and development engineers, Two-Phase Heat Transfer contains the theories and methods of two-phase heat transfer that are solution oriented. Written in a clear and concise manner, the book includes information on physical phenomena, experimental data, theoretical solutions, and empirical correlations. A very wide range of real-world applications and formulas/correlations for them are presented. The two-phase heat transfer systems covered in the book include boiling, condensation, gas-liquid mixtures, and gas-solid mixtures. The authorAa noted expert in this fieldAalso reviews the numerous applications of two-phase heat transfer such as heat exchangers in refrigeration and air conditioning, conventional and nuclear power generation, solar power plants, aeronautics, chemical processes, petroleum industry, and more. Special attention is given to heat exchangers using mini-channels which are being increasingly used in a variety of applications. This important book: Offers a practical guide to two-phase heat transfer Includes clear guidance for design professionals by identifying the best available predictive techniques Reviews the extensive literature on heat transfer in two-phase systems Presents information to aid in the design and analysis of heat exchangers. Written for students and research, design, and development engineers, Two-Phase Heat Transfer is a comprehensive volume that covers the theory, methods, and applications of two-phase heat transfer.
Instabilities Modeling in Geomechanics describes complex mechanisms which are frequently met in earthquake nucleation, geothermal energy production, nuclear waste disposal and CO2 sequestration. These mechanisms involve systems of non-linear differential equations that express the evolution of the geosystem (e.g. strain localization, temperature runaway, pore pressure build-up, etc.) at different length and time scales. In order to study the evolution of a system and possible instabilities, it is essential to know the mathematical properties of the governing equations. Therefore, questions of the existence, uniqueness and stability of solutions naturally arise. This book particularly explores bifurcation theory and stability analysis, which are robust and rigorous mathematical tools that allow us to study the behavior of complex geosystems, without even explicitly solving the governing equations. The contents are organized into 10 chapters which illustrate the application of these methods in various fields of geomechanics.
Surface Production Operations series for over twenty years, has
taken the guess work out of the design, selection, specification,
installation, operation, testing, and trouble-shooting of surface
production equipment. The third volume in this classic series,
Facility Piping and Pipelines presents readers with a ?hands on?
manual for applying mechanical and physical principles to all
phases of facility piping and pipeline system design, construction
and operation. Covers new and existing piping systems including concepts for
expansion, supports, manifolds, pigging and insulation
requirements
Today's shortages of resources make the search for wear and corrosion resistant materials one of the most important tasks of the next century. Since the surface of a material is the location where any interaction occurs, it is that there the hardest requirements on the material are imposed: to be wear resistant for tools and bearings; to be corrosion resistant for turbine blades and tubes in the petrochemical industry; to be antireflecting for solar cells; to be decorative for architectural panels and to combine several of these properties in other applications. Surface engineering is the general term that incorporates all the techniques by which a surface modification can be accomplished. These techniques include both coating and modification of the surface by ion implantation and laser beam melting. In recent years a continuously growing number of these techniques were developed to the extent that it became more and more difficult to maintain an overlook and to understand which of these highly differentiated techniques might be applied to resolve a given surface engineering problem. A similar development is also occuring for surface characterization techniques. This volume contains contributions from renowned scientists and engineers to the Eurocourse the aim of which was to inform about the various techniques and to give a comprehensive survey of the latest development on this subject.
This book presents the foundation and validation of the Cosserat Plate Theory, numerical experiments of deformation and vibration, and the unique properties of the Cosserat plates. Our approach incorporates the high accuracy assumptions of the Cosserat plate deformation consistent with the Cosserat Elasticity equilibrium equations, constitutive formulas, strain-displacement and torsion-microrotation relations. The Cosserat Plate Theory is parametric, where the "splitting parameter" minimizes the Cosserat plate energy. The validation of the theory is based on the comparison with the three-dimensional Cosserat Elastostatics and Elastodynamics. The numerical results are obtained using the Finite Element Method (FEM) specifically developed to solve the parametric system of equations. The analysis of deformation of a variety of Cosserat plates shows the stress concentration reduction, higher stiffness of Cosserat plates, and the size-effect related to the microstructure. The analysis of vibration of Cosserat plates predicts size-related properties of the plate vibration, the existence of the additional so-called Cosserat plate resonances, and the dynamic anisotropy, related to the dependency of the resonances on the microelement's shapes and orientations.
Sie suchen einen schnellen Überblick über die Strömungsmechanik? Dann ist dies genau das richtige Buch für Sie. Die Autoren erklären Ihnen erst, was man unter einem Fluid versteht, und welche Eigenschaften Fluide haben. Dann erläutern sie, was es zu ruhenden und sich bewegenden Fluiden zu wissen gibt, führen Sie in den Impulssatz und die Energiegleichung ein und vieles mehr. Kapitel zu kompressiblen Strömungen, Strömungsmaschinen und Strömungsmesstechnik folgen. Übungsaufgaben mit Lösungen helfen Ihnen, Ihr Wissen zu festigen und zu prüfen.
Comprehensive resource focusing on theoretical methods and experimental techniques to analyze physical polymer chemistry Connecting varied issues to demonstrate the impact on areas like biodegradability, environmental friendliness, structure-property relationship, and molecular design, Conformational Analysis of Polymers introduces theoretical methods and experimental techniques to analyze physical polymer chemistry. Opening with a description of fundamental concepts and then describing the conformational characteristics of various polymers including different heteroatoms and chemical species, the text continues onto the applications of density functional theory to polymer crystals and structure-property relationships and concludes by bringing these issues together to demonstrate their practical impact on different areas of the field. Various methods and techniques, including density functional theory (DFT), statistical mechanics, NMR, spectroscopy, and molecular orbital theory, are also covered. Written by a highly qualified author, Conformational Analysis of Polymers explores sample topics such as Fundamentals of polymer physical chemistry: stereochemistry of polymers, models for polymeric chains, Flory-Huggins theory, and rubber elasticity Quantum chemistry for polymers: ab initio molecular orbital theory, density functional theory (DFT), NMR parameters, and periodic DFT of polymer crystals Statistical mechanics of polymeric chains: basic rotational isomeric state (RIS) scheme, refined RIS method, inversional-rotational isomeric state method, and probability theory for RIS scheme Experimental techniques: NMR and scattering methods Providing a timely update to the field of chain conformations of synthetic polymers and connecting fundamental theoretical approaches, experimental techniques, and case study applications, Conformational Analysis of Polymers is an essential resource for polymer chemists, physicists, and material scientists, industrial engineers who synthesize and process polymers, and academic researchers.
The book conveys modern techniques and the latest state-of-the-art with regard to the most fundamental aspects of computational contact mechanics. However, since contact can readily be interpreted as a special type of interface problem, it seems advisable not to isolate contact mechanics, but rather to address it in the context of a broader class of problems denoted as computational interface mechanics. The book gives a clear understanding of the underlying physics of interfaces, and a comprehensive insight into the current state-of-the-art and selected cutting-edge research directions in the computational treatment of interface effects. It focuses on the modeling of friction, wear, lubrication, cohesive interfaces, grain boundaries, phase boundaries, fracture, thermo-mechanics and particulate contact (e.g. granular media). Also the most important computational aspects are addressed, including discretization techniques for finite deformations, solution algorithms for single- and multi-processor computing environments, multi-scale approaches, discrete element models and multi-physics problems including contact and interface constraints. Among the computational techniques covered in this book are finite element (FEM) and boundary element (BEM) methods, atomistic models, molecular dynamics (MD), discrete element methods (DEM), coupling approaches for multi-scale simulations, and tools for an efficient automated FEM code generation.
This book provides an introduction to chemical engineering topics in an integrated fashion and illustrates the methodology of process design through the processes followed in the text. It provides an all-in-one coverage of topics from process plant interactions to economic analyses and thermodynamic properties of streams. The book facilitates the students' execution of process analysis and plant design in an orderly and logical fashion. This book serves as a good introduction and can act as a stepping stone for students interested in the traditional chemical engineering subjects.
Thermal Systems Design Discover a project-based approach to thermal systems design In the newly revised Second Edition of Thermal Systems Design: Fundamentals and Projects, accomplished engineer and educator Dr. Richard J. Martin offers senior undergraduate and graduate students an insightful exposure to real-world design projects. The author delivers a brief review of the laws of thermodynamics, fluid mechanics, heat transfer, and combustion before moving on to a more expansive discussion of how to apply these fundamentals to design common thermal systems like boilers, combustion turbines, heat pumps, and refrigeration systems. The book includes design prompts for 14 real-world projects, teaching students and readers how to approach tasks like preparing Process Flow Diagrams and computing the thermodynamic details necessary to describe the states designated therein. Readers will learn to size pipes, ducts, and major equipment and to prepare Piping and Instrumentation Diagrams that contain the instruments, valves, and control loops needed for automatic functioning of the system. The Second Edition offers an updated look at the pedagogy of conservation equations, new examples of fuel-rich combustion, and a new summary of techniques to mitigate against thermal expansion and shock. Readers will also enjoy: Thorough introductions to thermodynamics, fluid mechanics, and heat transfer, including topics like the thermodynamics of state, flow in porous media, and radiant exchange A broad exploration of combustion fundamentals, including pollutant formation and control, combustion safety, and simple tools for computing thermochemical equilibrium when product gases contain carbon monoxide and hydrogen Practical discussions of process flow diagrams, including intelligent CAD, equipment, process lines, valves and instruments, and non-engineering items In-depth examinations of advanced thermodynamics, including customized functions to compute thermodynamic properties of air, combustion products, water/steam, and ammonia right in the user's Excel workbook Perfect for students and instructors in capstone design courses, Thermal Systems Design: Fundamentals and Projects is also a must-read resource for mechanical and chemical engineering practitioners who are seeking to extend their engineering know-how to a wide range of unfamiliar thermal systems.
Laser-Based Additive Manufacturing Explore laser-based additive manufacturing processes via multi-scale modeling and computer simulation In Laser-Based Additive Manufacturing: Modeling, Simulation, and Experiments, a distinguished team of researchers delivers an incisive framework for understanding materials processing using laser-based additive manufacturing (LAM). The book describes the use of computational modeling and simulation to explore and describe the LAM technique, to improve the compositional, phase, and microstructural evolution of the material, and to enhance the mechanical, chemical, and functional properties of the manufactured components. The accomplished authors combine a comprehensive overview of multi-scale modeling and simulation with experimental and practical observations, offering a systematic review of laser-material interactions in advanced LAM processes. They also describe the real-world applications of LAM, including component processing and surface functionalization. In addition to explorations of residual stresses, three-dimensional defects, and surface physical texture in LAM, readers will also find: A thorough introduction to additive manufacturing (AM), including the advantages of AM over conventional manufacturing and the challenges involved with using the technology A comprehensive exploration of computation materials science, including length- and time-scales in materials modeling and the current state of computational modeling in LAM Practical discussions of laser-material interaction in LAM, including the conversion of light energy to heat, modes of heat dissipation, and the dynamics of the melt-pool In-depth examinations of the microstructural and mechanical aspects of LAM integrated with modeling Perfect for materials scientists, mechanical engineers, and physicists, Laser-Based Additive Manufacturing: Modeling, Simulation, and Experiments is perfect for anyone seeking an insightful treatment of this cutting-edge technology in the areas of alloys, ceramics, and composites.
Pump Wisdom Explore key facets of centrifugal pump ownership, installation, operation, and troubleshooting The Second Edition of Pump Wisdom: Essential Centrifugal Pump Knowledge for Operators and Specialists delivers a concise explanation of how pumps function, the design specifications that must be considered before purchasing a pump, and current best practices in lubrication and mechanical seals. Readers will encounter new startup and surveillance tips for pump operators, as well as repair versus replacement or upgrade considerations for maintenance decision makers, new condition monitoring guidance for centrifugal pumps, and expanded coverage of operator best practices. This latest edition of Pump Wisdom: Essential Centrifugal Pump Knowledge for Operators and Specialists includes expanded coverage of areas critical to achieving best-in-class pump reliability, including commonly encountered issues and easy-to-follow instructions for getting centrifugal pumps to operate safely and reliably. This book also provides: Comprehensible and accessible explanations of pump hydraulics Simple explorations of the mechanical aspects of pumps with coverage of bearings, seals, impeller trimming, lubricant application, and more Safety tips and instructions for centrifugal pumps Perfect for chemical, petroleum, and mechanical engineers, Pump Wisdom: Essential Centrifugal Pump Knowledge for Operators and Specialists is also an ideal resource for operators, managers, purchasing agents, machinists, reliability technicians, and maintenance workers in water and wastewater plants.
POLY(LACTIC ACID) The second edition of a key reference, fully updated to reflect new research and applications Poly(lactic acid)s - PLAs, biodegradable polymers derived from lactic acid, have become vital components of a sustainable society. Eco-friendly PLA polymers are used in numerous industrial applications ranging from packaging to medical implants and to wastewater treatment. The global PLA market is predicted to expand significantly over the next decade due to increasing demand for compostable and recyclable materials produced from renewable resources. Poly(lactic acid) Synthesis, Structures, Properties, Processing, Applications, and End of Life provides comprehensive coverage of the basic chemistry, production, and industrial use of PLA. Contributions from an international panel of experts review specific processing methods, characterization techniques, and various applications in medicine, textiles, packaging, and environmental engineering. Now in its second edition, this fully up-to-date volume features new and revised chapters on 3D printing, the mechanical and chemical recycling of PLA, PLA stereocomplex crystals, PLA composites, the environmental footprint of PLA, and more. Highlights the biodegradability, recycling, and sustainability benefits of PLA Describes processing and conversion technologies for PLA, such as injection molding, extrusion, blending, and thermoforming Covers various aspects of lactic acid/lactide monomers, including physicochemical properties and production Examines different condensation reactions and modification strategies for enhanced polymerization of PLA Discusses the thermal, rheological, and mechanical properties of PLA Addresses degradation and environmental issues of PLA, including photodegradation, radiolysis, hydrolytic degradation, biodegradation, and life cycle assessment Poly(lactic acid) Synthesis, Structures, Properties, Processing, Applications, and End of Life, Second Edition remains essential reading for polymer engineers, materials scientists, polymer chemists, chemical engineers, industry professionals using PLA, and scientists and advanced student engineers interested in biodegradable plastics.
Incisive discussions of a critical mission-enabling technology for deep space missions In The Technology of Discovery: Radioisotope Thermoelectric Generators and Thermoelectric Technologies for Space Exploration, distinguished JPL engineer and manager David Woerner delivers an insightful discussion of how radioisotope thermoelectric generators (RTGs) are used in the exploration of space. It also explores their history, function, their market potential, and the governmental forces that drive their production and design. Finally, it presents key technologies incorporated in RTGs and their potential for future missions and design innovation. The author provides a clear and understandable treatment of the subject, ranging from straightforward overviews of the technology to complex discussions of the field of thermoelectrics. Included is also background on NASA's decision to resurrect the GPHS-RTG and discussion of the future of commercialization of nuclear space missions. Readers will also find: A thorough introduction to RTGs, as well as their invention, history, and evolution Comprehensive explorations of the contributions made by RTGs to US space exploration Practical discussions of the evolution, selection, and production of RPS fuels In-depth examinations of technologies and generators currently in development, including skutterudite thermoelectrics for an enhanced MMRTG Perfect for space explorers, aerospace engineers, managers, and scientists, The Technology of Discovery: Radioisotope Thermoelectric Generators and Thermoelectric Technologies for Space Exploration will also earn a place in the libraries of NASA archivists and other historians.
Solid State Physics Enables readers to easily understand the basics of solid state physics Solid State Physics is a successful short textbook that gives a clear and concise introduction to its subject. The presentation is suitable for students who are exposed to this topic for the first time. Each chapter starts with basic principles and gently progresses to more advanced concepts, using easy-to-follow explanations and keeping mathematical formalism to a minimum. This new edition is thoroughly revised, with easier-to-understand descriptions of metallic and covalent bonding, a straightforward proof of Bloch's theorem, a simpler approach to the nearly free electron model, and enhanced pedagogical features, such as more than 100 discussion questions, 70 problems - including problems to train the students' skills to find computational solutions - and multiple-choice questions at the end of each chapter, with solutions in the book for self-training. Solid State Physics introduces the readers to: Crystal structures and underlying bonding mechanisms The mechanical and vibrational properties of solids Electronic properties in both a classical and a quantum mechanical picture, with a treatment of the electronic phenomena in metals, semiconductors and insulators More advanced subjects, such as magnetism, superconductivity and phenomena emerging for nano-scaled solids For bachelor's students in physics, materials sciences, engineering sciences, and chemistry, Solid State Physics serves as an introductory textbook, with many helpful supplementary learning resources included throughout the text and available online, to aid in reader comprehension.
Provides timely coverage of an important research area that is highly relevant to advanced detection and control technology Projecting device performance beyond the scaling limits of Moore's law requires technologies based on novel materials and device architecture. Due to its excellent electronic, thermal, and optical properties, graphene has emerged as a scalable, low-cost material with enormous integration possibilities for numerous optoelectronic applications. Graphene for Post-Moore Silicon Optoelectronics presents an up-to-date overview of the fundamentals, applications, challenges, and opportunities of integrating graphene and other 2D materials with silicon (Si) technologies. With an emphasis on graphene-silicon (Gr/Si) integrated devices in optoelectronics, this valuable resource also addresses emerging applications such as optoelectronic synaptic devices, optical modulators, and infrared image sensors. The book opens with an introduction to graphene for silicon optoelectronics, followed by chapters describing the growth, transfer, and physics of graphene/silicon junctions. Subsequent chapters each focus on a particular Gr/Si application, including high-performance photodetectors, solar energy harvesting devices, and hybrid waveguide devices. The book concludes by offering perspectives on the future challenges and prospects of Gr/Si optoelectronics, including the emergence of wafer-scale systems and neuromorphic optoelectronics. Illustrates the benefits of graphene-based electronics and hybrid device architectures that incorporate existing Si technology Covers all essential aspects of Gr/Si devices, including material synthesis, device fabrication, system integration, and related physics Summarizes current progress and future challenges of wafer-scale 2D-Si integrated optoelectronic devices Explores a wide range of Gr/Si devices, such as synaptic phototransistors, hybrid waveguide modulators, and graphene thermopile image sensors Graphene for Post-Moore Silicon Optoelectronics is essential reading for materials scientists, electronics engineers, and chemists in both academia and industry working with the next generation of Gr/Si devices.
An insightful and multidisciplinary exploration of plastic pollutants in the ocean environment In Plastics and the Ocean, renowned researcher Anthony L. Andrady delivers a comprehensive and up-to-date treatment of the sources, characterization, and environmental impacts of plastics in the ocean. The book focuses on macroplastics as well as micro-scale and nanoscale plastics and the human impacts of these that reach consumers via seafood. It also addresses the human behavioral aspects of the problem via discussions of the mismanagement of urban litter. A diverse collection of expert perspectives is arranged logically and guides the reader through this fast-evolving multi-disciplinary subject area. Beginning with an overview of the field, the book goes on to explore the importance of this area of research to related disciplines and to the everyday lives of consumers. This text offers engineers and scientists an up-to-date review of the subject and the state of the art as summarized by key researchers in the field. The book includes: A synthesis of leading voices in oceanography, biogeochemistry, industrial chemistry, ecotoxicology, polymer science, and behavioral science Discussions of the impacts of a range of marine plastics, including large debris, microplastics, and nanoplastics A summary of the abundance and impacts of plastics in various niches in the marine environment Descriptions of the current methodologies for sampling, detection, processing, and identification of plastic waste Plastics and the Ocean is an indispensable resource for professionals, researchers, instructors, and graduate students in polymer science, marine biology, and environmental engineering. It's also a must-read text for chemical engineers, materials scientists, and environmental engineers seeking a one-stop resource that describes the origins, occurrence, composition, environmental fate, and biological impacts of plastic pollutants in an ocean environment.
An Introduction to the Fundamentals and History of Control Charts, Applications, and Guidelines for Implementation Introduction to Statistical Process Control examines various types of control charts that are typically used by engineering students and practitioners. This book helps readers develop a better understanding of the history, implementation, and use-cases. Students are presented with varying control chart techniques, information, and roadmaps to ensure their control charts are operating efficiently and producing specification-confirming products. This is the essential text on the theories and applications behind statistical methods and control procedures. This eight-chapter reference breaks information down into digestible sections and covers topics including: An introduction to the basics as well as a background of control charts Widely used and newly researched attributes of control charts, including guidelines for implementation The process capability index for both normal and non-normal distribution via the sampling of multiple dependent states An overview of attribute control charts based on memory statistics The development of control charts using EQMA statistics For a solid understanding of control methodologies and the basics of quality assurance, Introduction to Statistical Process Control is a definitive reference designed to be read by practitioners and students alike. It is an essential textbook for those who want to explore quality control and systems design.
Linear and Nonlinear Instabilities in Mechanical Systems: Analysis, Control and Application Hiroshi Yabuno, University of Tsukuba, Japan An in-depth insight into nonlinear analysis and control As mechanical systems become lighter, faster, and more flexible, various nonlinear instability phenomena can occur in practical systems. The fundamental knowledge of nonlinear analysis and control is essential to engineers for analysing and controlling nonlinear instability phenomena. The book bridges the gap between the mathematical expressions of nonlinear dynamics and the corresponding practical phenomena. Linear and Nonlinear Instabilities in Mechanical Systems: Analysis, Control and Application provides a detailed and informed insight into the fundamental methods for analysis and control for nonlinear instabilities from the practical point of view. Key features: * Refers to the behaviours of practical mechanical systems as aircraft, railway vehicle, robot manipulator, micro/nano sensor * Enhances the rigorous and practical understanding of mathematical methods from an engineering point of view. * The theoretical results obtained by nonlinear analysis are interpreted by using accompanied videos on the real nonlinear behaviors of nonlinear mechanical systems. Linear and Nonlinear Instabilities in Mechanical Systems: Analysis, Control and Application is an essential textbook for students on engineering courses, and can also be used for self-study or reference by engineers.
Flexagons, paper models that can be bent in different ways to change their shape, are easy to make and work in surprising ways. This book contains numerous diagrams that the reader can photocopy and use to construct a variety of fascinating flexagons. The author also explains the mathematics behind these amazing creations. Although knowledge of the technical details requires a mathematical background, the models can be made and used by anyone. Flexagons appeals to all readers interested in puzzles and recreational mathematics.
The Finite Element Method: Its Basis and Fundamentals offers a complete introduction to the basis of the finite element method, covering fundamental theory and worked examples in the detail required for readers to apply the knowledge to their own engineering problems and understand more advanced applications. This edition sees a significant rearrangement of the book s content to enable clearer development of the finite element method, with major new chapters and sections added to cover: Weak forms Variational forms Multi-dimensional field problems Automatic mesh generation Plate bending and shells Developments in meshless techniques Focusing on the core knowledge, mathematical and analytical
tools needed for successful application, "The Finite Element
Method: Its Basis and Fundamentals" is the authoritative resource
of choice for graduate level students, researchers and professional
engineers involved in finite element-based engineering
analysis.
This book examines and explains material from the 9th edition of the AASHTO LRFD Bridge Design Specifications, including deck and parapet design, load calculations, limit states and load combinations, concrete and steel I-girder design, bearing design, and more. With increased focus on earthquake resiliency, two separate chapters- one on conventional seismic design and the other on seismic isolation applied to bridges- will fully address this vital topic. The primary focus is on steel and concrete I-girder bridges, with regard to both superstructure and substructure design. Features: Includes several worked examples for a project bridge as well as actual bridges designed by the author Examines seismic design concepts and design details for bridges Presents the latest material based on the 9th edition of the LRFD Bridge Design Specifications Covers fatigue, strength, service, and extreme event limit states Includes numerous solved problems and exercises at the end of each chapter to illustrate the concepts presented LRFD Bridge Design: Fundamentals and Applications will serve as a useful text for graduate and upper-level undergraduate civil engineering students as well as practicing structural engineers. |
You may like...
Developments in Surface Contamination…
Rajiv Kohli, K.L. Mittal
Hardcover
R5,597
Discovery Miles 55 970
|