![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > General
Contact mechanics was and is an important branch in mechanics which covers a broad field of theoretical, numerical and experimental investigations. In this carefully edited book the reader will obtain a state-of-the-art overview on formulation, mathematical analysis and numerical solution procedures of contact problems. The contributions collected in this volume summarize the lectures presented during the 4th Contact Mechanics Interantional symposium (CMIS) held in Hannover, Germany, 2005, by leading scientists in the area of contact mechanics.
"Hilbert Transform Applications in Mechanical Vibration" addresses recent advances in theory and applications of the Hilbert transform to vibration engineering, enabling laboratory dynamic tests to be performed more rapidly and accurately. The author integrates important pioneering developments in signal processing and mathematical models with typical properties of mechanical dynamic constructions such as resonance, nonlinear stiffness and damping. A comprehensive account of the main applications is provided, covering dynamic testing and the extraction of the modal parameters of nonlinear vibration systems, including the initial elastic and damping force characteristics. This unique merger of technical properties and digital signal processing allows the instant solution of a variety of engineering problems and the in-depth exploration of the physics of vibration by analysis, identification and simulation. This book will appeal to both professionals and students working in mechanical, aerospace, and civil engineering, as well as naval architecture, biomechanics, robotics, and mechatronics. "Hilbert Transform Applications in Mechanical Vibration" employs modern applications of the Hilbert transform time domain methods including: The Hilbert Vibration Decomposition method for adaptive separation of a multi-component non-stationary vibration signal into simple quasi-harmonic components; this method is characterized by high frequency resolution, which provides a comprehensive account of the case of amplitude and frequency modulated vibration analysis.The FREEVIB and FORCEVIB main applications, covering dynamic testing and extraction of the modal parameters of nonlinear vibration systems including the initial elastic and damping force characteristics under free and forced vibration regimes. Identification methods contribute to efficient and accurate testing of vibration systems, avoiding effort-consuming measurement and analysis.Precise identification of nonlinear and asymmetric systems considering high frequency harmonics on the base of the congruent envelope and congruent frequency.Accompanied by a website at www.wiley.com/go/feldman, housing MATLAB(R)/ SIMULINK codes.
This book presents results of experimental and theoretical studies of "gas-solid particles" turbulent two-phase flows. It analyzes the characteristics of heterogeneous flows in channels (pipes), as well as those in the vicinity of the critical points of bodies subjected to flow and in the boundary layer developing on their surface. Coverage also treats in detail problems of physical simulation of turbulent gas flows which carry solid particles.
This book is part of a set of books which offers advanced students successive characterization tool phases, the study of all types of phase (liquid, gas and solid, pure or multi-component), process engineering, chemical and electrochemical equilibria, and the properties of surfaces and phases of small sizes. Macroscopic and microscopic models are in turn covered with a constant correlation between the two scales. Particular attention has been given to the rigor of mathematical developments.
The European Turbulence Conferences have been organized under the auspices of the European Mechanics Committee (Euromech) to provide a forum for discussion and exchange of recent and new results in the field of turbulence. The first conference was organized in Lyon in 1986 with 152 participants. The second and third conferences were held in Berlin (1988) and Stockholm (1990) with 165 and 172 participants respectively. The fourth was organized in Delft from 30 June to 3 July 1992 by the J.M. Burgers Centre. There were 214 participants from 22 countries. This steadily growing number of participants demonstrates both the success and need for this type of conference. The main topics of the Fourth European Turbulence Conference were: Dynamical Systems and Transition; Statistical Physics and Turbulence; Experiments and Novel Experimental Techniques; Particles and Bubbles in Turbulence; Simulation Methods; Coherent Structures; Turbulence Modelling and Compressibility Effects. In addition a special session was held on the subject of CeBular Automata. Each of the sessions was introduced with a survey lecture. The lecturers were: W. Eckhaus, AJ. Libchaber, L. Katgerman, F. Durst, M. Lesieur, B. Legras, D.G. Dritschel and P. Bradshaw. The contributions of the participants were subdivided into oral and poster presentations. In addition to the normal program, some Speciai Interest Groups of Ercoftac (European Research Community on Flow, Turbulence and Combustion) presented their research activities in the form of a poster.
The frozen-hydrated specimen is the principal element that unifies the subject of low temperature microscopy, and frozen-hydrated specimens are what this book is all about. Freezing the sample as quickly as possible and then further preparing the specimen for microscopy or microanalysis, whether still embedded in ice or not: there seem to be as many variations on this theme as there are creative scientists with problems of structure and composition to investigate. Yet all share a body of com mon fact and theory upon which their work must be based. Low-Temperature Micros copy and Analysis provides, for the first time, a comprehensive treatment of all the elements to which one needs access. What is the appeal behind the use of frozen-hydrated specimens for biological electron microscopy, and why is it so important that such a book should now have been written? If one cannot observe dynamic events as they are in progress, rapid specimen freezing at least offers the possibility to trap structures, organelles, macro molecules, or ions and other solutes in a form that is identical to what the native structure was like at the moment of trapping. The pursuit of this ideal becomes all the more necessary in electron microscopy because of the enormous increase in resolution that is available with electron-optical instruments, compared to light optical microscopes."
Probabilistic risk and hazard assessments are applied to a wide range of engineering systems, mainly for regulatory reasons needed for development consent, system certification and occupational health and safety issues. The purpose of this book is to raise awareness of the limitations, uncertainties and other issues inherent in probabilistic risk analysis procedures. Probabilistic Risk Assessment of Engineering Systems describes: the importance of probabilistic risk assessment in decision making, i.e. risk management; types of risk and probabilistic risk analysis procedures; data needed for the conduct of probabilistic risk analysis; and acceptable/tolerable risk and other risk acceptance criteria. In essence, the book provides a multi-disciplinary and integrated explanation of risk assessment procedures that will enable the non-specialist reader to gain valuable insights into the development of risk analysis procedures. Practising engineers and graduate engineering students across a range of disciplines will find this book immensely useful.
High-speed impact dynamics is of interest in the fundamental sciences, e.g., astrophysics and space sciences, and has a number of important applications in military technologies, homeland security and engineering. When compared with experiments or numerical simulations, analytical approaches in impact mechanics only seldom yield useful results. However, when successful, analytical approaches allow us to determine general laws that are not only important in themselves but also serve as benchmarks for subsequent numerical simulations and experiments. The main goal of this monograph is to demonstrate the potential and effectiveness of analytical methods in applied high-speed penetration mechanics for two classes of problem. The first class of problem is shape optimization of impactors penetrating into ductile, concrete and some composite media. The second class of problem comprises investigation of ballistic properties and optimization of multi-layered shields, including spaced and two-component ceramic shields. Despite the massive use of mathematical techniques, the obtained results have a clear engineering meaning and are presented in an easy-to-use form. One of the chapters is devoted solely to some common approximate models, and this is the first time that a comprehensive description of the localized impactor/medium interaction approach is given. In the monograph the authors present systematically their theoretical results in the field of high-speed impact dynamics obtained during the last decade which only partially appeared in scientific journals and conferences proceedings.
Due to their special properties, organic semiconductors enable the development of large-area, low-cost devices, paving the way for flexible and nomadic applications that advantageously replace those made with traditional semiconductors. In this second volume, we study the main applications of organic semiconductors, such as organic light-emitting diodes (OLEDs), solar cells (OPVs) and organic field-effect transistors (OFETs). The commercialization of these new devices is then discussed within the Brabec triangle framework, in which yield, stability and production costs are the key factors. We also address the environmental impact of organic devices for their future development. This book presents the application side of organic electronics from a technological, economic and environmental perspective. It is intended for researchers and students in university programs or engineering schools specializing in electronics, energy and materials.
Understanding the physical and thermomechanical response of materials subjected to intensive dynamic loading is a challenge of great significance in engineering today. This volume assumes the task of gathering both experimental and diagnostic methods in one place, since not much information has been previously disseminated in the scientific literature.
Handling of powders and bulk solids is a critical industrial
technology across a broad spectrum of industries, from minerals
processing to bulk and fine chemicals, and the food and
pharmaceutical industries.
This book serves as an introduction to magnetohydrodynamics (MHD) for graduate and advanced undergraduate engineering students. It may be used by engineers and physicists in research institutions and industry to become familiar with the particular phenomena of magnetothermohydraulics in technical liquid metal flows influenced by magnetic fields. The starting point of the book is the outcome of a recent nuclear fusion project. Therefore, it contains many new results that can be utilized for the design and optimization of various technical systems and processes.
Human factors, also known as human engineering or human factors engineering, is the application of behavioral and biological sciences to the design of machines and human-machine systems. Automation refers to the mechanization and integration of the sensing of environmental variables, data processing and decision making and mechanical action. This book deals with all the issues involved in human-automation systems from design to control and performance of both humans and machines.
Considering the uncertainties in mechanical engineering in order to improve the performance of future products or systems is becoming a competitive advantage, sometimes even a necessity, when seeking to guarantee an increasingly high safety requirement. Mechanical Engineering in Uncertainties deals with modeling, quantification and propagation of uncertainties. It also examines how to take into account uncertainties through reliability analyses and optimization under uncertainty. The spectrum of the methods presented ranges from classical approaches to more recent developments and advanced methods. The methodologies are illustrated by concrete examples in various fields of mechanics (civil engineering, mechanical engineering and fluid mechanics). This book is intended for both (young) researchers and engineers interested in the treatment of uncertainties in mechanical engineering.
A thorough and up-to-date introduction to solid-state sensors, materials, fabrication processes, and applications Solid-State Sensors provides a comprehensive introduction to the field, covering fundamental principles, underlying theories, sensor materials, fabrication technologies, current and possible future applications, and more. Presented in a clear and accessible format, this reader-friendly textbook describes the fundamentals and classification of all major types of solid-state sensors, including piezoresistive, capacitive, thermometric, optical bio-chemical, magnetic, and acoustic-based sensors. Throughout the text, the authors offer insight into how different solid-state methods complement each other as well as their respective advantages and disadvantages in relation to specific devices and a variety of state-of-the-art applications. Detailed yet concise chapters include numerous visual illustrations and comparative tables of different subtypes of sensors for a given application. With in-depth discussion of recent developments, current research, and key challenges in the field of solid-state sensors, this volume: Describes solid-state sensing parameters and their importance in sensor characterization Explores possible future applications and breakthroughs in associated fields of research Covers the fundamental principles and relevant equations of sensing phenomena Discusses promising smart materials that have the potential for sensing applications Includes an overview of the history, classification, and terminology of sensors With well-balanced coverage of the fundamentals of sensor design, current and emerging applications, and the most recent research developments in the field, Solid-State Sensors is an excellent textbook for advanced students and professionals in disciplines such as Electrical and Electronics Engineering, Physics, Chemistry, and Biomedical Engineering.
This book contains contributions by colleagues, former students and friends of Professor Eli Reshotko in celebration of his 60th birth day. Since Professor Reshotko's scientific and engineering contribu tions have been in the areas of hydrodynamic stability, transition to turbulence, and boundary layer flows, it is only appropriate that the articles in this volume be devoted to these and related topics. The first two sections focus on instabilities and transition in sub sonic and supersonic flows, respectively. The third section deals with developing turbulence, while the the final section treats related prob lems in engineering fluid mechanics. The diversity and scope of the articles contained herein exemplify the insight and expertise required in the study of transitional and turbulent flows today - traits which also exemplify Eli Reshotko's contributions to these fields. A few of the articles in this volume were presented at a sym posium in honor of Eli Reshotko's 60th birthday, held in Newport News, Virginia, on July 28, 1991. The symposium was sponsored by lCASE, and organized by M.Y. Hussaini (lCASE) and R. Hirsh (U.S. National Science Foundation). Of those who could not attend, many chose to honor Professor Reshotko by a contribution to the volume dedicated to him. We would like to use this opportunity to express our deep ap preciation to M.Y. Hussaini for initiating this very special tribute to Eli, and to Ms. Emily Todd for her efforts in the volume preparation and in the organization of the symposium."
Sensor technology is an increasingly important area of research This will be the only book entirely devoted to the topic
Callister's Materials Science and Engineering: An Introduction, 10th Edition promotes student understanding of the three primary types of materials (metals, ceramics, and polymers) and composites, as well as the relationships that exist between the structural elements of materials and their properties.
Micromechanical manufacturing based on microequipment creates new possibi- ties in goods production. If microequipment sizes are comparable to the sizes of the microdevices to be produced, it is possible to decrease the cost of production drastically. The main components of the production cost - material, energy, space consumption, equipment, and maintenance - decrease with the scaling down of equipment sizes. To obtain really inexpensive production, labor costs must be reduced to almost zero. For this purpose, fully automated microfactories will be developed. To create fully automated microfactories, we propose using arti?cial neural networks having different structures. The simplest perceptron-like neural network can be used at the lowest levels of microfactory control systems. Adaptive Critic Design, based on neural network models of the microfactory objects, can be used for manufacturing process optimization, while associative-projective neural n- works and networks like ART could be used for the highest levels of control systems. We have examined the performance of different neural networks in traditional image recognition tasks and in problems that appear in micromechanical manufacturing. We and our colleagues also have developed an approach to mic- equipment creation in the form of sequential generations. Each subsequent gene- tion must be of a smaller size than the previous ones and must be made by previous generations. Prototypes of ?rst-generation microequipment have been developed and assessed.
This book gives an introduction to nanostructured materials and guides the reader through their different engineering applications. It addresses the special phenomena and potentials involved in the applications without going into too much scientific detail of the physics and chemistry involved, which makes the reading interesting for beginners in the field. Materials for different applications in engineering are described, such as those used in opto-electronics, energy, tribology, bio-applications, catalysis, reinforcement and many more. In each application chapter, the reader will learn about the phenomena involved in the application, the nanostructured materials used in the field and their processing, besides finding some practical examples of their use in laboratories and in industry.The clear language and the application-oriented perspective of the book makes it suitable for both engineers and students who want to learn about applications of nanostructured materials in Engineering.
Nanophase Materials is the first and, as yet, the only comprehensive book published in this new and exciting area of materials science. It gives a broad overview of the revolutionary new field of nanophase materials; a view which spans the materials, physics, and chemistry research communities at a tutorial level that is suitable for advanced undergraduates, graduate students, postdoctoral researchers, and experts or would-be experts in the science of nanostructured materials. The articles are authored by many of the world's most prominent scientists in this field. The book covers the diverse methods for synthesizing nanophase materials, a variety of subsequent processing methodologies, what is known about the structures of these materials on various length scales from atomic to macroscopic, and the properties of these unique and novel materials. The materials properties covered are mechanical, electronic, optical, and magnetic and hence span a wide range of important new opportunities for technological applications.
"Molecular Modeling and Multiscaling Issues for Electronic Material
Applications" provides a snapshot on the progression of molecular
modeling in the electronics industry and how molecular modeling is
currently being used to understand material performance to solve
relevant issues in this field. This book is intended to introduce
the reader to the evolving role of molecular modeling, especially
seen through the eyes of the IEEE community involved in material
modeling for electronic applications. Part I presents the role that
quantum mechanics can play in performance prediction, such as
properties dependent upon electronic structure, but also shows
examples how molecular models may be used in performance
diagnostics, especially when chemistry is part of the performance
issue. Part II gives examples of large-scale atomistic methods in
material failure and shows several examples of transitioning
between grain boundary simulations (on the atomistic level)and
large-scale models including an example of the use of
quasi-continuum methods that are being used to address multiscaling
issues. Part III is a more specific look at molecular dynamics in
the determination of the thermal conductivity of carbon-nanotubes.
Part IV covers the many aspects of molecular modeling needed to
understand the relationship between the molecular structure and
mechanical performance of materials. Finally, Part V discusses the
transitional topic of multiscale modeling and recent developments
to reach the submicronscale using mesoscale models, including
examples of direct scaling and parameterization from the atomistic
to the coarse-grained particle level.
The Reference of Choice for Today's Engineer. Revised, expanded, updated — and ready to use! Every engineer should have a copy of the bestselling Wiley Engineer's Desk Reference — the ideal all-in-one resource for practical engineering applications and daily problem solving. Now fully updated to address the latest developments in theory and practice, this brand-new Second Edition balances authoritative coverage of classical engineering topics with new material on state-of-the-art subjects such as composites, lasers, automatic data collection, and more. No other book on the market covers the broad spectrum of engineering in as concise a fashion. So whether you're looking for a specific piece of data or general background knowledge, this conveniently sized ready reference puts the information you need right at your fingertips. Contents include:
This is a textbook on models and modeling in mechanics. It introduces a new unifying approach to applied mechanics: through the concept of the open scheme, a step-by-step approach to modeling evolves. The unifying approach enables a very large scope on relatively few pages: the book treats theories of mass points and rigid bodies, continuum models of solids and fluids, as well as traditional engineering mechanics of beams, cables, pipe flow and wave propagation. Models of Mechanics complements existing books that deal with continuum mechanics. In contrast to such books it gives a setting that is broad enough to encompass also the mechanics of mass points, and theories of beams and other intrinsically one-dimensional bodies. An obtained knowledge of the unifying approach can be a base for advanced studies of fluid and solid mechanics, as well as specializations in mechatronics, control and structural optimization. |
You may like...
Thermophysical Properties of Water…
Jeffrey Cooper, Edwin Lefevre
Staple bound
R579
Discovery Miles 5 790
Developments in Surface Contamination…
Rajiv Kohli, K.L. Mittal
Hardcover
R5,597
Discovery Miles 55 970
VECTOR MECHANICS FOR ENGINEERS: STATICS…
Ferdinand Beer, E Johnston, …
Paperback
R1,946
Discovery Miles 19 460
|