![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > General
This textbook is written specifically for those studying and working in an engineering discipline. It will be an invaluable tool for the existing or aspirant engineer and engineering manager. The text introduces the reader to management and related issues (for example law and economics), which are essential when dealing with customers, suppliers, contractors, accountants, lawyers, economists and managers, either inside or outside an organisation.
Developments in Surface Contamination and Cleaning: Applications of Cleaning Techniques, Volume Eleven, part of the Developments in Surface Contamination and Cleaning series, provides a guide to recent advances in the application of cleaning techniques for the removal of surface contamination in various industries, such as aerospace, automotive, biomedical, defense, energy, manufacturing, microelectronics, optics and xerography. The material in this new edition compiles cleaning applications into one easy reference that has been fully updated to incorporate new applications and techniques. Taken as a whole, the series forms a unique reference for professionals and academics working in the area of surface contamination and cleaning.
Advances in Applied Mechanics draws together recent significant advances in various topics in applied mechanics. Published since 1948, Advances in Applied Mechanics aims to provide authoritative review articles on topics in the mechanical sciences, primarily of interest to scientists and engineers working in the various branches of mechanics, but also of interest to the many who use the results of investigations in mechanics in various application areas, such as aerospace, chemical, civil, environmental, mechanical and nuclear engineering.
Light water reactors (LWRs) are the predominant class of nuclear
power reactors in operation today; however, ageing and degradation
can influence both their performance and lifetime. Knowledge of
these factors is therefore critical to safe, continuous operation.
Materials ageing and degradation in light water reactors provides a
comprehensive guide to prevalent deterioration mechanisms, and the
approaches used to handle their effects.
This book is based on a set of notes developed over many years for
an introductory course taught to seniors and entering graduate
students in materials science. An Introduction to Aspects of
Thermodynamics and Kinetics Relevant to Materials Science is about
the application of thermodynamics and kinetics to solve problems
within Materials Science. Emphasis is to provide a physical
understanding of the phenomenon under discussion, with the
mathematics presented as a guide.
The major developments in the fields of fluid and solid mechanics
are scattered throughout an array of technical journals, often
making it difficult to find what the real advances are, especially
for a researcher new to the field or an individual interested in
discovering the state-of-the-art in connection with applications.
The Advances in Applied Mechanics book series draws together recent
significant advances in various topics in applied mechanics.
Published since 1948, Advances in Applied Mechanics aims to provide
authoritative review articles on topics in the mechanical sciences,
primarily of interest to scientists and engineers working in the
various branches of mechanics, but also of interest to the many who
use the results of investigations in mechanics in various
application areas such as aerospace, chemical, civil,
environmental, mechanical and nuclear engineering. Advances in
Applied Mechanics continues to be a publication of high visibility
and impact. Review articles are provided by active, leading
scientists in the field by invitation of the editors. Many of the
articles published have become classics within their fields. Volume
41 in the series contains articles on topological fluid mechanics,
electrospinning, vortex dynamics and self-assembly.
Constitutive modelling is the mathematical description of how
materials respond to various loadings. This is the most intensely
researched field within solid mechanics because of its complexity
and the importance of accurate constitutive models for practical
engineering problems.
The Seventh International Conference series on Vision in Vehicles
was held in Marseilles in September 1997. This event was run in
conjunction with the Applied Vision Association, the Ergonomics
Society and with the participation of INRETS (Institut National de
Recherche sur les Transports et leur Securite).
Data fusion is a rapidly developing technology which involves the combination of information supplied by several NDT (Non-Destructive Testing) sensors to provide a more complete and understandable picture of structural integrity. This text is the first to be devoted exclusively to the concept of multisensor integration and data fusion applied to NDT. The advantages of this methodology are widely acknowledged and the author presents an excellent introduction to data fusion processes. Problems are approached progressively through detailed case studies, offering practical guidance for those wishing to develop and explore NDT data fusion further. This book will prove invaluable to inspectors, students and researchers concerned with NDT signal processing measurements and testing. It shows the great value and major benefits which can be achieved by implementing multisensor data fusion, not only in NDT but also in any discipline where measurements and testing are key activities.
Within the last decade there has been an increasing awareness that use of standards deeply notched fracture mechanics test specimens can result in substantial over-or-under-assessments of the real fracture toughness associated with shallow surface cracks.
Thermophysical Properties of Water Substance
A primary objective in a first course in mechanics is to help develop a student's ability first to analyze problems in a simple and logical manner, and then to apply basic principles to their solutions. A strong conceptual understanding of these basic mechanics principles is essential for successfully solving mechanics problems. This edition of Vector Mechanics for Engineers will help instructors achieve these goals. Continuing in the spirit of its successful previous editions, this edition provides conceptually accurate and thorough coverage together with a significant refreshment of the exercise sets and online delivery of homework problems to your students. The 12th edition has new case studies and enhancements in the text and in Connect. The hallmark of the Beer-Johnston series has been the problem sets.This edition is no different. Over 650 of the homework problems in the text are new or revised. One of the characteristics of the approach used in this book is that mechanics of particles is clearly separated from the mechanics of rigid bodies. This approach makes it possible to consider simple practical applications at an early stage and to postpone the introduction of the more difficult concepts. Additionally, Connect has over 100 Free-Body Diagram Tool Problems and Process-Oriented Problems. McGraw-Hill's Connect, is also available. Connect is the only integrated learning system that empowers students by continuously adapting to deliver precisely what they need, when they need it, how they need it, so that class time is more effective. Connect allows the professor to assign homework, quizzes, and tests easily and automatically grades and records the scores of the student's work. Problems are randomized to prevent sharing of answers an may also have a "multi-step solution" which helps move the students' learning along if they experience difficulty.
A primary objective in a first course in mechanics is to help develop a student's ability first to analyze problems in a simple and logical manner and then to apply basic principles to their solutions. A strong conceptual understanding of these basic mechanics principles is essential for successfully solving mechanics problems. This edition of Vector Mechanics for Engineers will help instructors achieve these goals. Continuing in the spirit of its successful previous editions this edition provides conceptually accurate and thorough coverage together with a significant refreshment of the exercise sets and online delivery of homework problems to your students. The 12th edition has new case studies and enhancements in the text and in Connect. The hallmark of the Beer-Johnston series has been the problem sets.This edition is no different. Over 650 of the homework problems in the text are new or revised. One of the characteristics of the approach used in this book is that mechanics of particles is clearly separated from the mechanics of rigid bodies. This approach makes it possible to consider simple practical applications at an early stage and to postpone the introduction of the more difficult concepts. Additionally Connect has over 100 Free-Body Diagram Tool Problems and Process-Oriented Problems. McGraw-Hill's Connect is also available. Connect is the only integrated learning system that empowers students by continuously adapting to deliver precisely what they need when they need it how they need it so that class time is more effective. Connect allows the professor to assign homework quizzes and tests easily and automatically grades and records the scores of the student's work. Problems are randomized to prevent sharing of answers an may also have a "multi-step solution" which helps move the students' learning along if they experience difficulty.
The new edition of Fundamentals of Aerodynamics follows in the same tradition as the previous editions: it is for students-to be read, understood, and enjoyed. It is consciously written in a clear, informal, and direct style to talk to the reader and gain their interest in the challenging and yet beautiful discipline of aerodynamics. The new edition of Fundamentals of Aerodynamics is also available in McGraw Hill Connect, featuring SmartBook 2.0, a curated question bank, Proctorio, and more!
A holistic and straightforward analysis framework for understanding particle strength distributions In Particle Strengths: Extreme Value Distributions in Fracture, distinguished researcher Dr. Robert F. Cook delivers a thorough exploration of the science and related engineering of fracture strength distributions of single particles tested in diametral compression. In the book, the author explains particle strengths in the broader context of material strengths to permit readers to design with particles in systems in which mechanical properties are crucial to application, manufacturing, and handling. Particle Strengths compiles published data on particle strengths into a common format that includes over 140 materials systems and over 270 published strength distributions derived from over 13000 individual particle strength measurements. It offers physically consistent descriptions of strength behavior, including the strength threshold, using simple polynomial distribution functions that can easily be implemented. Readers will also find: A thorough introduction to particles and particle loading, including discussions of particle failure and human activity Comprehensive explorations of stochastic scaling of particle strength distributions, including concave and sigmoidal stochastic distributions Practical discussions of agglomerate particle strengths, including those relevant to pharmaceuticals, foods, and catalysts Detailed treatments of applications and scaling of particle strengths, including particle crushing energy and grinding particle reliability Perfect for materials scientists and engineers, mining and construction engineers, and environmental scientists, Particle Strengths: Extreme Value Distributions in Fracture will also benefit anthropologists, zoologists, pharmaceutical scientists, biomaterials scientists and engineers, and graduate students studying materials science, and chemical, mechanical, and biomedical engineering.
Heat is a branch of thermodynamics that occupies a unique position due to its involvement in the field of practice. Being linked to the management, transport and exchange of energy in thermal form, it impacts all aspects of human life and activity. Heat transfers are, by nature, classified as conduction, convection (which inserts conduction into fluid mechanics) and radiation. The importance of these three transfer methods has resulted - justifiably - in a separate volume being afforded to each of them, with the subject of convection split into two volumes. This fourth volume is dedicated to convection, more specifically, the problem of particular convective transfers. Twophase convection is considered and a more recent and much lesser-known field is presented, that of phase change transfer. Particular significance is given to numerical applications, allowing the reader to handle orders of magnitude, an important point in all physics. Heat Transfer 4 combines a basic approach with a deeper understanding of the discipline and will therefore appeal to a wide audience, from technician to engineer, from doctoral student to teacher-researcher.
Optimizing the process of converting heat into mechanical power is a major challenge when it comes to meeting targets for protecting primary energy resources and minimizing our environmental impact. For many years to come, the use of thermal engines will continue to be necessary for transportation on land, by sea and by air, as well as for many industrial applications. Against this background, Thermodynamics of Heat Engines aims to present a comprehensive overview of the thermodynamic concepts, including combustion, that are necessary for understanding the phenomena governing the energy efficiency of internal and external combustion engines as well as that of gas turbines and jet propulsion engines. Existing and developing industrial applications, based on combined heat and power (CHP) or the use of staged cycles, are presented, with particular attention paid to the recovery of low temperature waste heat. This book, which is mainly intended for university and engineering students but is also useful for engineers and technicians working in the fields concerned, provides a basis for reflection on the optimization of energy systems.
BLOCKCHAIN TECHNOLOGY IN CORPORATE GOVERANCE This book investigates the recent applications of blockchain technology in financial services, energy sector, and summarizes regulatory responses, to set the scene for future work on corporate governance. This edited book highlights the current governance framework for the blockchain and its development as a self-governing framework. It discusses blockchain technology's effectiveness in developing solutions for supply chains, trade finance, and banking. Moreover, it shows how banking and financial institutions are the major beneficiaries of this decentralized technology. Furthermore, the book outlines the link between company governance theories, regulatory, ethical, and social controls, and blockchain adoption. It also investigates the recent applications of blockchain technology in financial services, the health sector, and the energy sector. Audience The book is specially designed for researchers, industrialists, engineers, graduate students, and policymakers, who aspire to learn, discuss, and carry out further research into the opportunities offered by blockchain and the possible ways of regulating it.
INTRODUCTION TO CONVECTIVE HEAT TRANSFER A highly practical intro to solving real-world convective heat transfer problems with MATLAB® and MAPLE In Introduction to Convective Heat Transfer, accomplished professor and mechanical engineer Nevzat Onur delivers an insightful exploration of the physical mechanisms of convective heat transfer and an accessible treatment of how to build mathematical models of these physical processes. Providing a new perspective on convective heat transfer, the book is comprised of twelve chapters, all of which contain numerous practical examples. The book emphasizes foundational concepts and is integrated with explanations of computational programs like MATLAB® and MAPLE to offer students a practical outlet for the concepts discussed within. The focus throughout is on practical, physical analysis rather than mathematical detail, which helps students learn to use the provided computational tools quickly and accurately. In addition to a solutions manual for instructors and the aforementioned MAPLE and MATLAB® files, Introduction to Convective Heat Transfer includes: A thorough introduction to the foundations of convective heat transfer, including coordinate systems, and continuum and thermodynamic equilibrium concepts Practical explorations of the fundamental equations of laminar convective heat transfer, including integral formulation and differential formulation Comprehensive discussions of the equations of incompressible external laminar boundary layers, including laminar flow forced convection and the thermal boundary layer concept In-depth examinations of dimensional analysis, including the dimensions of physical quantities, dimensional homogeneity, and dimensionless numbers Ideal for first-year graduates in mechanical, aerospace, and chemical engineering, Introduction to Convective Heat Transfer is also an indispensable resource for practicing engineers in academia and industry in the mechanical, aerospace, and chemical engineering fields.
Heat is a branch of thermodynamics that occupies a unique position due to its involvement in the field of practice. Being linked to the management, transport and exchange of energy in thermal form, it impacts all aspects of human life and activity. Heat transfers are, by nature, classified as conduction, convection (which inserts conduction into fluid mechanics) and radiation. The importance of these three transfer methods has resulted - justifiably - in a separate volume being afforded to each of them, with the subject of convection split into two volumes. This third volume is dedicated to convection, more specifically, the foundations of convective transfers. Various angles are considered to cover this topic, including empirical relationships and analytically approaching boundary layers, including the integral methods and numerical approaches. The problem of heat exchangers is presented, without aiming to be an exhaustive treatise. Heat Transfer 3 combines a basic approach with a deeper understanding of the discipline and will therefore appeal to a wide audience, from technician to engineer, from doctoral student to teacher-researcher.
Fundamentals of Thermal-Fluid Sciences, Sixth Edition, is an abbreviated version of standard thermodynamics, fluid mechanics, and heat transfer texts, covering topics that the majority of engineering students will need in their professional lives. The text is well-suited for curriculums that have a common introductory course or a two-course sequence on thermal-fluid sciences. The book addresses tomorrow's engineers in a simple, yet precise manner, and it leads students toward a clear understanding and firm grasp of the basic principles of thermal-fluid sciences. Special effort has been made to appeal to readers' natural curiosity and to help students explore the various facets of the exciting subject area of thermal-fluid sciences. To enhance student reading, the sixth edition now includes SmartBook (R) 2.0. SmartBook 2.0-Our adaptive reading experience has been made more personal, accessible, productive, and mobile.
A comprehensive exploration of the monitoring, prediction, and prevention of major forms of localized corrosion in complex industrial environments In Localized Corrosion in Complex Environments, distinguished researcher Dr. Mike Yongjun Tan delivers a solution focused approach to localized corrosion issues in complex environments with the potential to affect structural integrity, public safety, environmental protection, or energy and water deliverability. The book focuses on significant civil and industrial infrastructures exposed to complex corrosion environments, like underground and offshore gas, oil, and water pipelines. The author offers information to help ensure the continued safe operation of aging infrastructures and discusses the limitations of current technologies and the need to continuously develop new and more efficient technologies to manage integrity, prevent structural failures, protect the environment, and reduce operational costs. Readers will also find: A thorough introduction to the major issues relevant to infrastructural corrosion issues Comprehensive explorations of issues likely to affect future fuel and energy infrastructures, like hydrogen containing pipelines and offshore and onshore wind farms Practical discussions of recent progress in inspection and monitoring technologies, as well as the protection provided by protective coatings Fulsome treatments of the use of corrosion inhibitors Perfect for materials and corrosion scientists, physical chemists, engineers, regulators, technologists, and environmentalists, Localized Corrosion in Complex Environments will also earn a place in the libraries of corrosion and materials engineers, maintenance engineers, pipeline engineers, field personnel, and anyone responsible for the integrity of production and transmission of oil, gas, and water.
ASPEN PLUS(R) Comprehensive resource covering Aspen Plus V12.1 and demonstrating how to implement the program in versatile chemical process industries Aspen Plus(R) Chemical Engineering Applications facilitates the process of learning and later mastering Aspen Plus(R), the market-leading chemical process modeling software, with step-by-step examples and succinct explanations. The text enables readers to identify solutions to various process engineering problems via screenshots of the Aspen Plus(R) platforms in parallel with the related text. To aid in information retention, the text includes end-of-chapter problems and term project problems, online exam and quiz problems for instructors that are parametrized (i.e., adjustable) so that each student will have a standalone version, and extra online material for students, such as Aspen Plus(R)-related files, that are used in the working tutorials throughout the entire textbook. The second edition of Aspen Plus(R) Chemical Engineering Applications includes information on: Various new features that were embedded into Aspen Plus V12.1 and existing features which have been modified Aspen Custom Modeler (ACM), covering basic features to show how to merge customized models into Aspen Plus simulator New updates to process dynamics and control and process economic analysis since the first edition was published Vital areas of interest in relation to the software, such as polymerization, drug solubility, solids handling, safety measures, and energy saving For chemical engineering students and industry professionals, the second edition of Aspen Plus(R) Chemical Engineering Applications is a key resource for understanding Aspen Plus and the new features that were added in version 12.1 of the software. Many supplementary learning resources help aid the reader with information retention.
Discover the role of nanotechnology in promoting plant growth and protection through the management of microbial pathogens In Nanotechnology in Plant Growth Promotion and Protection, distinguished researcher and author Dr. Avinash P. Ingle delivers a rigorous and insightful collection of some of the latest developments in nanotechnology particularly related to plant growth promotion and protection. The book focuses broadly on the role played by nanotechnology in growth promotion of plants and their protection through the management of different microbial pathogens. You'll learn about a wide variety of topics, including the role of nanomaterials in sustainable agriculture, how nano-fertilizers behave as soil feed, and the dual role of nanoparticles in plant growth promotion and phytopathogen management. You'll also discover why nanotechnology has the potential to revolutionize the current agricultural landscape through the development of nano-based products, like plant growth promoters, nano-fertilizers, nano-pesticides, and nano-insecticides. Find out why nano-based products promise to be a cost-effective, economically viable, and eco-friendly approach to tackling some of the most intractable problems in agriculture today. You'll also benefit from the inclusion of: A thorough introduction to the prospects and impacts of using nanotechnology to promote the growth of plants and control plant diseases An exploration of the effects of titanium dioxide nanomaterials on plant growth and the emerging applications of zinc-based nanoparticles in plant growth promotion Practical discussions of nano-fertilizer in enhancing the production potentials of crops and the potential applications of nanotechnology in plant nutrition and protection for sustainable agriculture A concise treatment of nanotechnology in seed science and soil feed Toxicological concerns of nanomaterials used in agriculture Perfect for undergraduate, graduate, and research students of nanotechnology, agriculture, plant science, plant physiology, and crops, Nanotechnology in Plant Growth Promotion and Protection will also earn a place in the libraries of professors and researchers in these areas, as well as regulators and policymakers. |
You may like...
Global Trends in Intelligent Computing…
B. K. Tripathy, D P Acharjya
Hardcover
R5,999
Discovery Miles 59 990
|