![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > General
Noise pollution around airports, trains, and industries increasingly attracts environmental concern and regulation. Designers and researchers have intensified the use of large-eddy simulation (LES) for noise reduced industrial design and acoustical research. This book, written by 30 experts, presents the theoretical background of acoustics and of LES, followed by details about numerical methods, e.g. discretization schemes, boundary conditions, coupling aspects. Industrially relevant, hybrid RANS/LES techniques for acoustic source predictions are presented in detail. Many applications are featured ranging from simple geometries for mixing layers and jet flows to complex wing and car geometries. Selected applications include recent scientific investigations at industrial and university research institutions. Presently one can't offer perfect solution methodologies that address all relevant applications, however the book presents a state of the art collection of methods, tools and evaluation methodologies. The advantages and weaknesses of both the commercial and the research methodologies are carefully presented.
This volume contains papers read at the 7th International Workshop entitled "Intelligent Agents: Decision-Support and Planning", Udine, Italy, Sep 30th - Oct 2nd, 2004. All papers were reviewed after they were presented, and revised for final publication. As its preceding ones, this workshop took place under the auspices of the International School for the Synthesis of Expert Knowledge (ISSEK) and was held in the picturesque Palazzo del Torso of the Centre International des Sciences Mecaniques (CISM), Udine, see picture below. CISM location " Palazzo del Torso " The workshop was jointly organised by Prof. G. Delia Riccia (University of Udine), Dr. D. Dubois ( CNRS and University of Toulouse III), Prof. R. Kruse (University of Magdeburg), and Prof. H .- J. Lenz (Free University Berlin). As the workshop was an invitational one, there was no need for a call for contributed papers. Contrarily, the four organisers recruited research workers from Europe who have had an impact in the last decade on "Intelligent Agents: Decision-Support and Planning".
This updated and expanded edition of the bestselling textbook provides a comprehensive introduction to the methods and theory of nonlinear finite element analysis. New material provides a concise introduction to some of the cutting-edge methods that have evolved in recent years in the field of nonlinear finite element modeling, and includes the eXtended finite element method (XFEM), multiresolution continuum theory for multiscale microstructures, and dislocation-density-based crystalline plasticity. Nonlinear Finite Elements for Continua and Structures, Second Edition focuses on the formulation and solution of discrete equations for various classes of problems that are of principal interest in applications to solid and structural mechanics. Topics covered include the discretization by finite elements of continua in one dimension and in multi-dimensions; the formulation of constitutive equations for nonlinear materials and large deformations; procedures for the solution of the discrete equations, including considerations of both numerical and multiscale physical instabilities; and the treatment of structural and contact-impact problems. Key features: * Presents a detailed and rigorous treatment of nonlinear solid mechanics and how it can be implemented in finite element analysis * Covers many of the material laws used in today's software and research * Introduces advanced topics in nonlinear finite element modelling of continua * Introduction of multiresolution continuum theory and XFEM * Accompanied by a website hosting a solution manual and MATLAB(R) and FORTRAN code Nonlinear Finite Elements for Continua and Structures, Second Edition is a must have textbook for graduate students in mechanical engineering, civil engineering, applied mathematics, engineering mechanics, and materials science, and is also an excellent source of information for researchers and practitioners in industry.
The nature and the human creations are full of complex phenomena, which sometimes can be observed but rarely follow our hypotheses. The best we can do is to build a parametric model and then try to adjust the unknown parameters based on the available observations. This topic, called parameter identification, is discussed in this book for materials and structures. The present volume of lecture notes follows a very successful advanced school, which we had the honor to coordinate in Udine, October 6-10, 2003. The authors of this volume present a wide spectrum of theories, methods and applications related to inverse and parameter identification problems. We thank the invited lecturers and the authors of this book for their contributions, the participants of the course for their active participation and the interesting discussions as well as the people of CISMfor their hospitality and their well-known professional help. Zenon Mroz Georgios E. Stavroulakis CONTENTS Preface An overview of enhanced modal identification by L. Bolognini 1 The reciprocity gap functional for identifying defects and cracks by H. D. Bui, A. Constantinescu and H. Maigre 17 Some innovative industrial prospects centered on inverse analyses by G. Maier, M. Bocciarelli andR. Fedele 55 Identification of damage in beam and plate structures using parameter dependent modal changes and thermographic methods by Z. Mroz andK. Dems 95 Crack and flaw identification in statics and dynamics, using filter algorithms and soft computing by G. E, Stavroulakis, M. Engelhardt andH.
Many problems in theoretical economics are mathematically formalized as dynam ical systems of difference and differential equations. In recent years a truly open approach to studying the dynamical behavior of these models has begun to make its way into the mainstream. That is, economists formulate their hypotheses and study the dynamics of the resulting models rather than formulating the dynamics and studying hypotheses that could lead to models with such dynamics. This is a great progress over using linear models, or using nonlinear models with a linear approach, or even squeezing economic models into well-studied nonlinear systems from other fields. There are today a number of economic journals open to publishing this type of work and some of these have become important. There are several societies which have annual meetings on the subject and participation at these has been growing at a good rate. And of course there are methods and techniques avail able to a more general audience, as well as a greater availability of software for numerical and graphical analysis that makes this type of research even more excit ing. The lecturers for the Advanced School on Nonlinear Dynamical Systems in Economics, who represent a wide selection of the research areas to which the the ory has been applied, agree on the importance of simulations and computer-based analysis. The School emphasized computer applications of models and methods, and all contributors ran computer lab sessions."
This course with 6 lecturers intends to present a systematic survey of recent re search results of well-known scientists on error-controlled adaptive finite element methods in solid and structural mechanics with emphasis to problem-dependent concepts for adaptivity, error analysis as well as h- and p-adaptive refinement techniques including meshing and remeshing. Challenging applications are of equal importance, including elastic and elastoplastic deformations of solids, con tact problems and thin-walled structures. Some major topics should be pointed out, namely: (i) The growing importance of goal-oriented and local error estimates for quan tities of interest-in comparison with global error estimates-based on dual finite element solutions; (a) The importance of the p-version of the finite element method in conjunction with parameter-dependent hierarchical approximations of the mathematical model, for example in boundary layers of elastic plates; (Hi) The choice of problem-oriented error measures in suitable norms, consider ing residual, averaging and hierarchical error estimates in conjunction with the efficiency of the associated adaptive computations; (iv) The importance of implicit local postprocessing with enhanced test spaces in order to get constant-free, i. e. absolute-not only relative-discretizati- error estimates; (v) The coupling of error-controlled adaptive discretizations and the mathemat ical modeling in related subdomains, such as boundary layers. The main goals of adaptivity are reliability and efficiency, combined with in sight and access to controls which are independent of the applied discretization methods. By these efforts, new paradigms in Computational Mechanics should be realized, namely verifications and even validations of engineering models.
Theories of surface waves develop since the end of XIX century and many fundamental problems like existence, phase and group velocities, attenuation (quality factor), mode conversion, etc. have been, in part successfully, solved within the framework of such simple models as ideal fluids^ or linear elasticity. However, a sufficiently complete presentation of this subject, particularly for solids, is still missing in the literature. The sole exception is the book of I. A. Viktorov^ which contains an extensive discussion of fundamental properties of surface waves in homogeneous and stratified linear elastic solids with particular emphasis on contributions of Russian scientists. Unfortunately, the book has never been translated to English and its Russian version is also hardly available. Practical applications of surface waves develop intensively since a much shorter period of time than theories even though the motivation of discoverers of surface waves such as Lord Rayleigh stems from their appearance in geophysics and seismology. Nowadays the growing interest in practical applications of surface waves stem from the following two main factors: surface waves are ideal for developing relatively cheap and convenient methods of nondestructive testing of various systems spanning from nanomaterials (e.g.
The aim of this book is to review recent research and technical advances, including the progress in design codes, related to the engineering applications of light gauge metal sections made in carbon, high strength and stainless steel, as well as aluminium alloys. Included is a review of the new technologies for connections of light gauge metal members. Main advanced applications, for residential, non residential and industrial buildings and pallet rack systems are also covered. For the first time, this book takes into account all the metallic materials now used more and more for structural components. The book will be of great interest not only for researchers but also for design engineers faced to the use of new metallic materials in modern structural applications.
Although nonlinear waves occur in nearly all branches of physics and engi neering, there is an amazing degree of agreement about the fundamental con cepts and the basic paradigms. The underlying unity of the theory for linearized waves is already well-established, with the importance of such universal concepts as group velocity and wave superposition. For nonlinear waves the last few decades have seen the emergence of analogous unifying comcepts. The pervasiveness of the soliton concept is amply demonstrated by the ubiquity of such models as the Korteweg-de Vries equation and the nonlinear Schrodinger equation. Similarly, there is a universality in the study of wave-wave interactions, whether determin istic or statistical, and in the recent developments in the theory of wave-mean flow interactions. The aim of this text is to present the basic paradigms of weakly nonlinear waves in fluids. This book is the outcome of a CISM Summer School held at Udine from September 20-24, 2004. . Like the lectures given there the text covers asymptotic methods for the derivation of canonical evolution equations, such as the Kortew- de Vries and nonlinear Schrodinger equations, descriptions of the basic solution sets of these evolution equations, and the most relevant and compelling applica tions. These themes are interlocked, and this will be demonstrated throughout the text . The topics address any fluid flow application, but there is a bias towards geophysical fluid dynamics, reflecting for the most part the areas where many applications have been found."
Moving Interfaces in Solids are typically phase boundaries and grain or subgrain boundaries. Continuum thermodynamics and continuum mechanics are applied to explain the motion process. Related numerical and experimental concepts are dealt with. Experts from material physics and mechanics bridge the gap between these fields. The reader is offered a common view of interface mtion in a unique representation. Examples are presented for various material systems.
Analysis of ASME Boiler, Pressure Vessel, and Nuclear Components in the Creep Range Second Edition The latest edition of the leading resource on elevated temperature design In the newly revised Second Edition of Analysis of ASME Boiler, Pressure Vessel, and Nuclear Components in the Creep Range, a team of distinguished engineers delivers an authoritative introduction to the principles of design at elevated temperatures. The authors draw on over 50 years of experience, explaining the methodology for accomplishing a safe and economical design for boiler and pressure vessel components operating at high temperatures. The text includes extensive references, offering the reader the opportunity to further their understanding of the subject. In this latest edition, each chapter has been updated and two brand-new chapters added--the first is Creep Analysis Using the Remaining Life Method, and the second is Requirements for Nuclear Components. Numerous examples are included to illustrate the practical application of the presented design and analysis methods. It also offers: A thorough introduction to creep-fatigue analysis of pressure vessel components using the concept of load-controlled and strain-deformation controlled limits An introduction to the creep requirements in API 579/ASME FFS-1 "Remaining Life Method" A summary of creep-fatigue analysis requirements in nuclear components Detailed procedure for designing cylindrical and spherical components of boilers and pressure vessels due to axial and external pressure in the creep regime A section on using finite element analysis to approximate fatigue in structural members in tension and bending Perfect for mechanical engineers and researchers working in mechanical engineering, Analysis of ASME Boiler, Pressure Vessel, and Nuclear Components in the Creep Range will also earn a place in the libraries of graduate students studying mechanical engineering, technical staff in industry, and industry analysts and researchers.
The work deals with the thermomechanical mechanical behavior of microstructured materials, which has attracted considerable interest from both the academic and the industrial research communities. The past decade has witnessed major progress in the development of analytical as well as numerical modeling approaches and of experimental methods in this field. Considerable research efforts have been aimed at obtaining microstructure-property correlations and at studying the damage and failure behavior of microstructured materials. The book combines an overview of important analytical and numerical modeling approaches in continuum micromechanics and is aimed at academic and industrial researchers, such as materials scientists, mechanical engineers, and applied physicists, who are working or planning to work in the field of mechanics of microstructured materials such as composites, metals and ceramics.
An updated account of the state of the art in the subject, presenting recent progress in two active and related areas of continuum mechanics: fracture mechanics and structured deformations.
This book, intended for people in engineering and fundamental sciences, presents an integrated mathematical methodology for advanced dynamics and control of structures and machines, ranging from the derivation of models up to the control synthesis problem. This point of view is particularly useful as the physical insight and the associated structural properties, related e.g. to the Lagrangian or Hamiltonian framework, can be advantageously utilized. To this end, up to date results in disciplines like continuum mechanics, analytical mechanics, thermodynamics and electrodynamics are presented exploiting the differential geometric properties, with the basic notions of this coordinate-free approach revisited in an own chapter. In order to illustrate the proposed methodologies, several industrial applications, e.g., the derivation of exact solutions for the deformation compensation by shaped actuation in elastic bodies, or the coordination of rigid and flexible joint robots, are discussed.
A comprehensive survey of boundary conditions as applied in antenna and microwave engineering, material physics, optics, and general electromagnetics research. Boundary conditions are essential for determining electromagnetic problems. Working with engineering problems, they provide analytic assistance in mathematical handling of electromagnetic structures, and offer synthetic help for designing new electromagnetic structures. Boundary Conditions in Electromagnetics describes the most-general boundary conditions restricted by linearity and locality, and analyzes basic plane-wave reflection and matching problems associated to a planar boundary in a simple-isotropic medium. This comprehensive text first introduces known special cases of particular familiar forms of boundary conditions -- perfect electromagnetic conductor, impedance, and DB boundaries -- and then examines various general forms of boundary conditions. Subsequent chapters discuss sesquilinear boundary conditions and practical computations on wave scattering by objects defined by various boundary conditions. The practical applications of less-common boundary conditions, such as for metamaterial and metasurface engineering, are referred to throughout the text. This book: Describes the mathematical analysis of fields associated to given boundary conditions Provides examples of how boundary conditions affect the scattering properties of a particle Contains ample in-chapter exercises and solutions, complete references, and a detailed index Includes appendices containing electromagnetic formulas, Gibbsian 3D dyadics, and four-dimensional formalism Boundary Conditions in Electromagnetics is an authoritative text for electrical engineers and physicists working in electromagnetics research, graduate or post-graduate students studying electromagnetics, and advanced readers interested in electromagnetic theory.
The set of books on Mechanical Engineering and Solid Mechanics, of which this book is the first volume, is an essential tool for those looking to develop a rigorous knowledge of the discipline, whether students, professionals (in search of an approach to a problem they are dealing with), or anyone else interested. This volume deals with the elements required for establishing the equations of motion when dealing with solid bodies. Chapter 1 focuses on the systems of reference used to locate solid bodies relative to the observer, and demonstrates how to describe their position, orientation, and evolution during their motion. Chapter 2 introduces descriptors of motion such as velocity and acceleration, and develops the concept of torsor notation in relation to these descriptors. Finally, Chapter 3 concerns the notions of mass and inertia, as well as the kinetic torsor and dynamic torsor which consolidate the kinematic and kinetic aspects in a single concept.
The term "turbulence" is used for a large variety of dynamical phenomena of fluids in motion whenever the details of the flow appear to be random and average properties are of primary interest. Just as wide ranging are the theoretical methods that have been applied towards a better understanding of fluid turbulence. In this book a number of these methods are described and applied to a broad range of problems from the transition to turbulence to asymptotic turbulence when the inertial part of the spectrum is fully developed. Statistical as well as nonstatistical treatments are presented, but a complete coverage of the subject is not attempted. The book will be of interest to scientists and engineers who wish to familiarize themselves with modern developments in theories of turbulence. The fact that the properties of turbulent fluid flow are addressed from very different points of view makes this volume rather unique among presently available books on turbulence.
Many partial differential equations arising in practice are parameter-dependent problems that are of singularly perturbed type. Prominent examples include plate and shell models for small thickness in solid mechanics, convection-diffusion problems in fluid mechanics, and equations arising in semi-conductor device modelling. Common features of these problems are layers and, in the case of non-smooth geometries, corner singularities. Mesh design principles for the efficient approximation of both features by the hp-version of the finite element method (hp-FEM) are proposed in this volume. For a class of singularly perturbed problems on polygonal domains, robust exponential convergence of the hp-FEM based on these mesh design principles is established rigorously.
This work is a collection of front-end research papers on data fusion and perceptions. Authors are leading European experts of Artificial Intelligence, Mathematical Statistics and/or Machine Learning. Area overlaps with Intelligent Data Analysis, which aims to unscramble latent structures in collected data: Statistical Learning, Model Selection, Information Fusion, Soccer Robots, Fuzzy Quantifiers, Emotions and Artifacts.
A building fire is dynamic. A continually changing hostile fire environment influences time relationships that affect fire defenses and risks to people and building functions. The fire and fire defenses in each building interact with different sequences and distinct ways. Risks are characterized by the building s performance. Significantly updated and restructured new edition Fire Performance Analysis for Buildings, 2nd Edition organizes the complex interactions into an analytical framework to evaluate any building - at any location - built under any regulatory jurisdiction or era. Systematic, logical procedures evaluate individual component behavior and integrate results to understand holistic performance. The Interactive Performance Information (IPI) chart structures complex time-related interactions among the fire, fire defenses, and associated risks. Quantification uses state-of-the-art deterministic methods of fire safety engineering and fire science. Managing uncertainty is specifically addressed. Key features: * Emphasizes fire performance analysis for new or existing buildings. * Augments fire dynamics calculation methods with qualitative methods to form a more complete understanding of the effects of hostile fire characteristics on building performance. * Describes fire ground operations for engineers with no fire service experience. An analysis evaluates ways the site and building design help or hinder manual fire suppression. * Establishes a transition from traditional structural requirements to modern calculation based structural analysis and design for fire conditions. Structural concepts are described for non-structural engineers to enable the roles of each profession to be integrated into comprehensive performance evaluations. * Addresses techniques of managing uncertainty to improve understanding and communication with professionals of other disciplines. * Describes methods of risk management using information from the building s performance analysis. Fire Performance Analysis for Buildings, 2nd Edition has been completely restructured around a performance based framework. Applications integrate traditional fire defenses with fire science and engineering to combine component performance with holistic performance.
The two volumes that comprise this work provide a comprehensive guide and source book on the marine use of composite materials. This second volume, Practical Considerations, examines how the theory can be used in the design and construction of marine structures, including ships, boats, offshore structures and other deep-ocean installations. Areas covered in this second volume include design, the role of adhesives, fabrication techniques and operational aspects such as response to slam loads and fatigue performance. The final three chapters of the book cover regulatory aspects of design, quality and safety assessment and management and organisation. These volumes will provide an introduction to this important and fast-growing area for students and researchers in naval architecture and maritime engineering. It will also be of value to practising engineers as comprehensive reference book.
More and more companies manufacture reinforced composite products. To meet the market need, researchers and industries are developing manufacturing methods without a reference that thoroughly covers the manufacturing guidelines. Composites Manufacturing: Materials, Product, and Process Engineering fills this void. The author presents a fundamental classification of processes, helping you understand where a process fits within the overall scheme and which process is best suited for a particular component. You will understand:
Praise for the first edition: Gold Medal Winner for Design Explorations "The Measure of Man and Woman is a critical reference that is a must for every design school and office. It is elegant in its simplicity and usability. Once again, the Henry Dreyfuss team makes a major contribution to the profession!" "The Measure of Man and Woman is a major contribution to the understanding of anthropometric and ergonomic realities that influence the design process. It is a vital reference document that not only informs, but provokes an awareness of and a sensitivity to complex and composite issues. Not since Le Corbusier’s more subjective and interpretive Le Modulor has there been a comprehensive reevaluation of man and woman’s occupation of space and the subsequent implications, responsibilities, and possibilities." The Measure of Man and Woman provides a comprehensive resource of critical information for creating products and environments that will suit the physical dimensions of people across the globe and with varying abilities. The revised edition of this classic volume includes more than 200 color drawings, up-to-date information on designing for the digital workplace, measurements for ADA compliance, a demo disk for ErgoForms–an ergonomic CAD program on CD-ROM–and much more. |
![]() ![]() You may like...
The Mechanics of Constitutive Modeling
Niels Saabye Ottosen, Matti Ristinmaa
Hardcover
R5,589
Discovery Miles 55 890
VECTOR MECHANICS FOR ENGINEERS…
Ferdinand Beer, E Johnston, …
Paperback
R2,040
Discovery Miles 20 400
VECTOR MECHANICS FOR ENGINEERS: STATICS…
Ferdinand Beer, E Johnston, …
Paperback
R2,005
Discovery Miles 20 050
Developments in Surface Contamination…
Rajiv Kohli, K.L. Mittal
Hardcover
R5,812
Discovery Miles 58 120
|