![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > General
This new edition of the unrivalled textbook introduces concepts such as the quantum theory of scattering by a potential, special and general cases of adding angular momenta, time-independent and time-dependent perturbation theory, and systems of identical particles. The entire book has been revised to take into account new developments in quantum mechanics curricula. The textbook retains its typical style also in the new edition: it explains the fundamental concepts in chapters which are elaborated in accompanying complements that provide more detailed discussions, examples and applications. * The quantum mechanics classic in a new edition: written by 1997 Nobel laureate Claude Cohen-Tannoudji and his colleagues Bernard Diu and Franck Laloe * As easily comprehensible as possible: all steps of the physical background and its mathematical representation are spelled out explicitly * Comprehensive: in addition to the fundamentals themselves, the book contains more than 170 worked examples plus exercises Claude Cohen-Tannoudji was a researcher at the Kastler-Brossel laboratory of the Ecole Normale Superieure in Paris where he also studied and received his PhD in 1962. In 1973 he became Professor of atomic and molecular physics at the College des France. His main research interests were optical pumping, quantum optics and atom-photon interactions. In 1997, Claude Cohen-Tannoudji, together with Steven Chu and William D. Phillips, was awarded the Nobel Prize in Physics for his research on laser cooling and trapping of neutral atoms. Bernard Diu was Professor at the Denis Diderot University (Paris VII). He was engaged in research at the Laboratory of Theoretical Physics and High Energy where his focus was on strong interactions physics and statistical mechanics. Franck Laloe was a researcher at the Kastler-Brossel laboratory of the Ecole Normale Superieure in Paris. His first assignment was with the University of Paris VI before he was appointed to the CNRS, the French National Research Center. His research was focused on optical pumping, statistical mechanics of quantum gases, musical acoustics and the foundations of quantum mechanics.
This book covers the essential elements of engineering mechanics of deformable bodies, including mechanical elements in tension-compression, torsion, and bending. It emphasizes a fundamental bottom up approach to the subject in a concise and uncluttered presentation. Of special interest are chapters dealing with potential energy as well as principle of virtual work methods for both exact and approximate solutions. The book places an emphasis on the underlying assumptions of the theories in order to encourage the reader to think more deeply about the subject matter. The book should be of special interest to undergraduate students looking for a streamlined presentation as well as those returning to the subject for a second time.
This book provides a clear and understandable text for users and developers of advanced engineered materials, particularly in the area of thin films, and addresses fundamentals of modifying the optical, electrical, photo-electric, triboligical, and corrosion resistance of solid surfaces and adding functionality to solids by engineering their surface, structure, and electronic, magnetic and optical structure. Thin film applications are emphasized. Through the inclusion of multiple clear examples of the technologies, how to use them, and the synthesis processes involved, the reader will gain a deep understanding of the purpose, goals, and methodology of surface engineering and engineered materials. Virtually every advance in thin film, energy, medical, tribological materials technologies has resulted from surface engineering and engineered materials. Surface engineering involves structures and compositions not found naturally in solids and is used to modify the surface properties of solids and involves application of thin film coatings, surface functionalization and activation, and plasma treatment. Engineered materials are the future of thin film technology. Engineered structures such as superlattices, nanolaminates, nanotubes, nanocomposites, smart materials, photonic bandgap materials, metamaterials, molecularly doped polymers and structured materials all have the capacity to expand and increase the functionality of thin films and coatings used in a variety of applications and provide new applications. New advanced deposition processes and hybrid processes are being used and developed to deposit advanced thin film materials and structures not possible with conventional techniques a decade ago. Properties can now be engineered into thin films that achieve performance not possible a decade ago.
In recent years, the physics community has experienced a revival of interest in spin effects in solid state systems. On one hand, the solid state systems, particularly, semiconductors and semiconductor nanosystems, allow us to perform benchtop studies of quantum and relativistic phenomena. On the other hand, this interest is supported by the prospects of realizing spin-based electronics, where the electron or nuclear spins may play a role of quantum or classical information carriers. This book looks in detail at the physics of interacting systems of electron and nuclear spins in semiconductors, with particular emphasis on low-dimensional structures. These two spin systems naturally appear in practically all widespread semiconductor compounds. The hyperfine interaction of the charge carriers and nuclear spins is particularly prominent in nanosystems due to the localization of the charge carriers, and gives rise to spin exchange between these two systems and a whole range of beautiful and complex physics of manybody and nonlinear systems. As a result, understanding of the intertwined spin systems of electrons and nuclei is crucial for in-depth studying and controlling the spin phenomena in semiconductors. The book addresses a number of the most prominent effects taking place in semiconductor nanosystems including hyperfine interaction, nuclear magnetic resonance, dynamical nuclear polarization, spin-Faraday and spin-Kerr effects, processes of electron spin decoherence and relaxation, effects of electron spin precession mode-locking and frequency focussing, as well as fluctuations of electron and nuclear spins.
Now in its fourth edition, Surfactants and Interfacial Phenomena explains why and how surfactants operate in interfacial processes (such as foaming, wetting, emulsion formation and detergency), and shows the correlations between a surfactant's chemical structure and its action. Updated and revised to include more modern information, along with additional three chapters on Surfactants in Biology and Biotechnology, Nanotechnology and Surfactants, and Molecular Modeling with Surfactant Systems, this is the premier text on the properties and applications of surfactants. This book provides an easy-to-read, user-friendly resource for industrial chemists and a text for classroom use, and is an unparalleled tool for understanding and applying the latest information on surfactants. Problems are included at the end of each chapter to enhance the reader s understanding, along with many tables of data that are not compiled elsewhere. Only the minimum mathematics is used in the explanation of topics to make it easy-to-understand and very user friendly.
Including recent advances and historically important catalysts, this book overviews methods for developing and applying polymerization catalysts - dealing with polymerization catalysts that afford commercially acceptable high yields of polymer with respect to catalyst mass or productivity. - Contains the valuable data needed to reproduce syntheses or use the catalyst for new applications - Offers a guide to the design and synthesis of catalysts, and their applications in synthesis of polymers - Includes the information essential for choosing the appropriate reactions to maximize yield of polymer synthesized - Presents new chapters on vanadium catalysts, Ziegler catalysts, laboratory homopolymerization, and copolymerization
Polymeric crystals are more complex in nature than other materials' crystal structures due to significant structural disorder present. The only comprehensive reference on polymer crystallization, "Handbook of Polymer Crystallization" provides readers with a broad, in-depth guide on the subject, covering the numerous problems encountered during crystallization as well as solutions to resolve those problems to achieve the desired result. Edited by leading authorities in the field, topics explored include neat polymers, heterogeneous systems, polymer blends, polymer composites orientation induced crystallization, crystallization in nanocomposites, and crystallization in complex thermal processing conditions.
Since the first edition in 1948, Patty's Industrial Hygiene and Toxicology has become a flagship publication for Wiley. During its nearly seven decades in print, it has become a standard reference for the fields of occupational health and toxicology. The volumes on industrial hygiene are cornerstone reference works for not only industrial hygienists but also chemists, engineers, toxicologists, lawyers, and occupational safety personnel. Volume 3 covers Recognition and Evaluation of Physical Agents and Biohazards. All of the chapters have been updated and a new chapter on Robotics has been added. These subjects are increasing in importance to industrial hygienists.
Since the first edition in 1948, Patty's Industrial Hygiene and Toxicology has become a flagship publication for Wiley. During its nearly seven decades in print, it has become a standard reference for the fields of occupational health and toxicology. The volumes on industrial hygiene are cornerstone reference works for not only industrial hygienists but also chemists, engineers, toxicologists, lawyers, and occupational safety personnel. Volume 4 covers environmental and health and safety program management, with a number of new chapters on sustainability, construction health and safety, health and safety of new energies and working with cannabis.
A guide to membrane separation based on a variety of porous materials with promising separation applications Microporous Materials for Separation Membranes offers an in-depth guide that explores microporous materials? potential for membrane applications. The authors?two experts on the topic?examine a wide range of porous materials that have application potential including: microporous silica, porous carbons, zeolites, metal-organic frameworks (MOFs), and porous organic frameworks (POFs). Comprehensive in scope, the book covers a broad range of topics on membrane separations such as: hydrogen recovery, carbon dioxide capture, air purification, hydrocarbon separation, pervaporation, and water treatment. In addition, this up-to-date resource explores the most recent materials for preparing microporous membranes and explores the most promising applications for industrial use. This important book: -Examines the use of microporous materials as membranes to perform with different gases and liquids -Offers an overview of the basic knowledge of membrane separation and an intense examination of separations -Describes the state-of-the-art of membrane separation with porous materials -Highlights the most promising applications of industrial interest Written for scientists working in the fields of membranes, gas and liquid, Microporous Materials for Separation Membranes offers a valuable guide to the potential of microporous materials for membrane applications.
Green Adhesives: Preparation, Properties and Applications deals with the fabrication methods, characterization, and applications of green adhesives. It also includes the collective properties of waterborne, bio, and wound-healing green adhesives. Exclusive attention is devoted to discussing the applications of green adhesives in biomedical coatings, food, and industrial applications.
Kleben gehArt zu den wArmearmen FA1/4getechniken und ist in der Lage, praktisch alle technisch nutzbaren Werkstoffe miteinander und untereinander flAchig und stoffschlA1/4ssig zu verbinden. Die hierbei durch AdhAsion entstehende Verbindung wird sehr schonend aufgebaut, da der Klebvorgang weder groA er Hitze (wie beim SchweiA en oder LAten), noch strukturschwAchende LAcher (wie beim Nieten oder Schrauben) bedarf. Die in der Regel groA flAchig ausgelegte Klebung sorgt zudem fA1/4r eine relativ gleichmAA ige Spannungsverteilung im Bauteil. In einem klar strukturierten 5-Phasensystem bietet FA1/4getechnologie Kleben hier eine detaillierte Anleitung fA1/4r die Schritte, die fA1/4r den Aufbau eines sicheren und stabilen Klebprozesses zur Herstellung eines qualitativ hochwertigen Bauteils notwendig sind. BerA1/4cksichtigt werden dabei unter anderem die Vorbehandlung der zu verklebenden Werkstoff oberflAchen, die Auswahl der geeigneten Klebstoffe, die Dimensionierung der Verklebung sowie die Prozessschritte zur Dosierung beziehungsweise AushArtung der Klebstoffe. Dem Anwender werden so moderne und nachhaltige Materialien sowie klebtechnische Verfahren prAsentiert, mit einem besonderen Fokus auf OberflAchenbehandlungsmAglichkeiten, Klebstoffe und Verarbeitungsmethoden relevant fA1/4r Industrie und Handwerk.
Designed for students who have already taken an introductory course in metallurgy or materials science, this advanced text describes how structures control the mechanical properties of metals.
"Fuzzy Multicriteria Decision-Making: Models, Algorithms and Applications" addresses theoretical and practical gaps in considering uncertainty and multicriteria factors encountered in the design, planning, and control of complex systems. Including all prerequisite knowledge and augmenting some parts with a step-by-step explanation of more advanced concepts, the authors provide a systematic and comprehensive presentation of the concepts, design methodology, and detailed algorithms. These are supported by many numeric illustrations and a number of application scenarios to motivate the reader and make some abstract concepts more tangible. "Fuzzy Multicriteria Decision-Making: Models, Algorithms and Applications" will appeal to a wide audience of researchers and practitioners in disciplines where decision-making is paramount, including various branches of engineering, operations research, economics and management; it will also be of interest to graduate students and senior undergraduate students in courses such as decision making, management, risk management, operations research, numerical methods, and knowledge-based systems.
Ein umfassender Leitfaden zu intelligenten Materialien und deren Einsatz bei der Probenvorbereitung, in Analyseverfahren und bei Anwendungen. Dieses umfassende zweibandige Handbuch prasentiert ausfuhrlich den aktuellen Erkenntnisstand bei neuen Materialien und setzt dabei das Hauptaugenmerk auf die selektive Probenvorbereitung, den rechtlichen Rahmen und die Wirkungen auf die Umwelt bei der Verwendung intelligenter Materialien fur die Probenvorbereitung in der analytischen Chemie. Behandelt wird ebenfalls die Verwendung in Analyseprozessen und Anwendungen. Sowohl methodische Aspekte als auch Aspekte der angewandten Analyse werden im Hinblick auf die Entwicklung und die Anwendung neuer Materialien fur die Festphasenextraktion (SPE) und die Festphasen-Mikroextraktion (SPME) betrachtet. Auch geht es um den Einsatz bei den verschiedenen Schritten und Verfahren des Analyseprozesses und in spezifischen Fachgebieten ? Wasser, Lebensmittel, Luft, Arzneimittel, klinische Wissenschaften und Forensik.
"Drysdale's book is by far the most comprehensive - everyone in the
office has a copy...now including me. It holds just about
everything you need to know about fire science." After 25 years as a bestseller, Dougal Drysdale's classic introduction has been brought up-to-date and expanded to incorporate the latest research and experimental data. Homework problems are included, with solutions, and others are available on the accompanying website at www.wiley.com/go/drysdale. Essential reading for all involved in the field from undergraduate and postgraduate students to practising fire safety engineers and fire prevention officers, "An Introduction to Fire Dynamics" is unique in that it addresses the fundamentals of fire science and fire dynamics, thus providing the scientific background necessary for the development of fire safety engineering as a professional discipline. "An Introduction to Fire Dynamics"Includes experimental data relevant to the understanding of fire behaviour of materials;Features numerical problems with answers illustrating the quantitative applications of the concepts presented;Extensively course-tested at Worcester Polytechnic Institute and the University of Edinburgh, and widely adopted throughout the world;Will appeal to all those working in fire safety engineering and related disciplines.
Fundamentals of Machine Component Design presents a thorough introduction to the concepts and methods essential to mechanical engineering design, analysis, and application. In-depth coverage of major topics, including free body diagrams, force flow concepts, failure theories, and fatigue design, are coupled with specific applications to bearings, springs, brakes, clutches, fasteners, and more for a real-world functional body of knowledge. Critical thinking and problem-solving skills are strengthened through a graphical procedural framework, enabling the effective identification of problems and clear presentation of solutions. Solidly focused on practical applications of fundamental theory, this text helps students develop the ability to conceptualize designs, interpret test results, and facilitate improvement. Clear presentation reinforces central ideas with multiple case studies, in-class exercises, homework problems, computer software data sets, and access to supplemental internet resources, while appendices provide extensive reference material on processing methods, joinability, failure modes, and material properties to aid student comprehension and encourage self-study.
This book offers detailed coverage of color, colorants, the coloring of materials, and reproducing the color of materials through imaging. It combines the clarity and ease of earlier editions with significant updates about the advancement in color theory and technology. Provides guidance for how to use color measurement instrumentation, make a visual assessment, set a visual tolerance, and select a formulation Supplements material with numerical examples, graphs, and illustrations that clarify and explain complex subjects Expands coverage of topics including spatial vision, solid-state lighting, cameras and spectrophotometers, and translucent materials
Fully up-to-date coverage of human factors engineering--plus online access to interactive demonstrations and exercises Engineering accomplishments can be as spectacular as a moon landing or as mundane as an uneventful drive to the local grocery store. Their failures can be as devastating as a plane crash or a massive oil spill. Over the past decade, psychologists and engineers have made great strides in understanding how humans interact with complex engineered systems--human engineering. "Introduction to Humans in Engineered Systems" provides historical context for the discipline and an overview of some of the real-world settings in which human engineering has been successfully applied, including aviation, medicine, computer science, and ground transportation. It presents findings on the nature and variety of human-engineering environments, human capabilities and limitations, and how these factors influence system performance. Important features include: Contents organized around the interaction of the human operator with the larger environment to guide the analysis of real-world situationsA web-based archive of interactive demonstrations, exercises, and links to additional readings and tools applicable to a range of application domainsWeb content customizable for focus on particular areas of study or research
Science is a quest for certainty, but lack of certainty is the driving force behind all of its endeavors. This book, specifically, examines the uncertainty of technological and industrial science. Uncertainty and Mechanics studies the concepts of mechanical design in an uncertain setting and explains engineering techniques for inventing cost-effective products. Though it references practical applications, this is a book about ideas and potential advances in mechanical science.
The loop-shaping approach consists of obtaining a specification in relation to the open loop of the control from specifications regarding various closed loop transfers, because it is easier to work on a single transfer (in addition to the open loop) than on a multitude of transfers (various loopings such as set point/error, disturbance/error, disturbance/control, etc.). The simplicity and flexibility of the approach make it very well adapted to the industrial context. This book presents the loop-shaping approach in its entirety, starting with the declension of high-level specifications into a loop-shaping specification. It then shows how it is possible to fully integrate this approach for the calculation of robust and efficient correctors with the help of existing techniques, which have already been industrially tried and tested, such as H-infinity synthesis. The concept of a gap metric (or distance between models) is also presented along with its connection with the prime factors of a set of systems shaping a ball of models, as well as its connections with robust synthesis by loop-shaping, in order to calculate efficient and robust correctors. As H-infinity loop-shaping is often demanding in terms of the order of correctors, the author also looks at loop-shaping synthesis under an ordering constraint. Two further promising lines of research are presented, one using stochastic optimization, and the other non-smooth optimization. Finally, the book introduces the concept of correction with two degrees of freedom via the formalism of prime factorization. Avenues for future work are also opened up by the author as he discusses the main drawbacks to loop-shaping synthesis, and how these issues can be solved using modern optimization techniques in an increasingly competitive industrial context, in accordance with ever more complex sets of functional specifications, associated with increasingly broad conditions of usage. Contents Introduction 1. The Loop-shaping Approach 2. Loop-shaping H-infinity Synthesis 3. Two Degrees-of-Freedom Controllers 4. Extensions and Optimizations Appendix 1. Demonstrative Elements on the Optimization of Robust Stabilization with Order Constraint Appendix 2. Establishment of Real LMIs for the Quasi-Convex Problem of Optimization of the Weighting Functions About the Authors Philippe Feyel is an R&D Engineer for the high-tech company Sagem Defense Securite, part of the defence and security business of the SAFRAN group, in Paris, France.
"Introduction to Magnetic Materials, 2nd Edition" covers the basics of magnetic quantities, magnetic devices, and materials used in practice. While retaining much of the original, this revision now covers SQUID and alternating gradient magnetometers, magnetic force microscope, Kerr effect, amorphous alloys, rare-earth magnets, SI Units alongside cgs units, and other up-to-date topics. In addition, the authors have added an entirely new chapter on information materials. The text presents materials at the practical rather than theoretical level, allowing for a physical, quantitative, measurement-based understanding of magnetism among readers, be they professional engineers or graduate-level students.
This book is intended as an essential study aid for the finite element method. Based on the free computer algebra system Maxima, the authors offer routines for symbolically or numerically solving problems in the context of plane truss and frame structures, allowing readers to check classical 'hand calculations' on the one hand and to understand the computer implementation of the method on the other. The mechanical theories focus on the classical one-dimensional structural elements, i.e. bars, Euler-Bernoulli and Timoshenko beams, and their combination to generalized beam elements. Focusing on one-dimensional elements reduces the complexity of the mathematical framework, and the resulting matrix equations can be displayed with all components and not merely in the form of a symbolic representation. In addition, the use of a computer algebra system and the incorporated functions, e.g. for equation solving, allows readers to focus more on the methodology of the finite element method and not on standard procedures.
This proceedings contains a collection of 22 papers presented at the 2018 Materials Science and Technology Meeting (MS&T'18) held in Columbus, Ohio, October 14-18, 2018. Symposia topics included in this volume are: Advances in Dielectric Materials and Electronic Devices Innovative Processing and Synthesis of Ceramics, Glasses and Composites International Symposium on Ceramic Matrix Composites Materials for Nuclear Applications and Extreme Environments Nanotechnology for Energy, Environment, Electronics, Healthcare and Industry Processing and Performance of Materials Using Microwaves, Electric and Magnetic Fields, Ultrasound, Lasers, and Mechanical Work - Rustum Roy Symposium Additive Manufacturing of Composites and Complex Materials Eco-Friendly and Sustainable Ceramics |
![]() ![]() You may like...
Developments in Surface Contamination…
Rajiv Kohli, K.L. Mittal
Hardcover
R5,812
Discovery Miles 58 120
Shigley's Mechanical Engineering Design…
Richard Budynas, Keith Nisbett
Paperback
R2,062
Discovery Miles 20 620
The Mechanics of Constitutive Modeling
Niels Saabye Ottosen, Matti Ristinmaa
Hardcover
R5,589
Discovery Miles 55 890
VECTOR MECHANICS FOR ENGINEERS: STATICS…
Ferdinand Beer, E Johnston, …
Paperback
R2,005
Discovery Miles 20 050
VECTOR MECHANICS FOR ENGINEERS…
Ferdinand Beer, E Johnston, …
Paperback
R2,040
Discovery Miles 20 400
|