![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Astronomy, space & time > Solar system > General
Ongoing studies in mathematical depth, and inferences from
helioseismological' observations of the internal solar rotation
have shown up the limitations in our knowledge of the solar
interior and of our understanding of the solar dynamo, manifested
in particular by the sunspot cycle, the Maunder minimum, and solar
flares. This second edition retains the identical overall structure
as the first edition, but is designed so as to be self-contained
with the early chapters presenting the basic physics and
mathematics underlying cosmical magnetohydrodynamics, followed by
studies of the specific applications appropriate for a book devoted
to a central area in astrophysics.
Image registration employs digital image processing in order to bring two or more digital images into precise alignment for analysis and comparison. Accurate registration algorithms are essential for creating mosaics of satellite images and tracking changes on the planet's surface over time. Bringing together invited contributions from thirty-six distinguished researchers, the book presents a detailed overview of current research and practice in the application of image registration to remote sensing imagery. Chapters cover the problem definition, theoretical issues in accuracy and efficiency, fundamental algorithms, and real-world case studies of image registration software applied to imagery from operational satellite systems. This book provides a comprehensive and practical overview for Earth and space scientists, presents image processing researchers with a summary of current research, and can be used for specialised graduate courses.
Ongoing advances in Solar System exploration continue to reveal its splendour and diversity in remarkable detail. This undergraduate-level textbook presents fascinating descriptions and colour images of the bodies in the Solar System, the processes that occur upon and within them, and their origins and evolution. It highlights important concepts and techniques in boxed summaries, while questions and exercises are embedded at appropriate points throughout the text, with full solutions provided. Written and edited by a team of practising planetary scientists, this third edition has been updated to reflect our current knowledge. It is ideal for introductory courses on the subject, and is suitable for self-study. The text is supported by online resources, hosted at www.cambridge.org/solarsystem3, which include selected figures from the book, self-assessment questions and sample tutor assignments, with outlines of suggested answers.
Black holes, once considered to be of purely theoretical interest, play an important role in observational astronomy and a range of astrophysical phenomena. This volume is based on a meeting held at the Space Telescope Science Institute, which explored the many aspects of black hole astrophysics. Written by world experts in areas of stellar-mass, intermediate-mass and supermassive black holes, these review papers provide an up-to-date overview of developments in this field. Topics discussed range from black hole entropy and the fate of information to supermassive black holes at the centers of galaxies, and from the possibility of producing black holes in collider experiments to the measurements of black hole spins. This is an invaluable resource for researchers currently working in the field, and for graduate students interested in this active and growing area of research.
A total eclipse of the Sun is the most awesome sight in the
heavens. Totality takes you to eclipses of the past, present, and
future, and lets you see--and feel--why people travel to the ends
of the Earth to observe them.
IAU Symposium 301 highlights the recent advances in the field of asteroseismology and was the twenty-first in a series of pulsation meetings started in Los Alamos in 1971 and held every two years. Topics discussed centred around seismic studies of all types of pulsating stars, which - in the era of space observations made by MOST, CoRoT and Kepler - use data of unprecedented precision. The Symposium was also the opportunity to honour Wojtek Dziembowski, one of the world's leaders in the study of solar and stellar pulsations. Highlights include contributions on observing from space and the ground, techniques of analysis and mode identification, astrophysical applications of pulsations, pulsation convection interaction, mass loss, microphysics, pulsations in main-sequence stars, compact stars and supergiants, and solar-like oscillations. Containing many excellent reviews, this volume is an important reference source for researchers on solar and stellar pulsations."
This book addresses the problems of Geocosmos and provides a snapshot of the current research in a broad area of Earth Sciences carried out in Russia and elsewhere. The themes covered include solar physics, physics of magnetosphere, ionosphere and atmosphere, solar-terrestrial coupling links, seismology, geoelectricity, paleomagnetism and rock magnetism, as well as cross-disciplinary studies. The proceedings are carefully edited, providing a panoramic outlook of a broad area of Earth Sciences. The readership includes colleague researchers, students and early career scientists. The proceedings will help the readers to look at their research fields from various points of view. Problems of Geocosmos conferences are held by Earth Physics Department, St. Petersburg University bi-annually since 1994. It is the largest forum of this kind in Russia/former Soviet Union attracting up to 200 researchers in Earth and magnetospheric physics.
Our Sun is the nearest star and thus an ideal laboratory to study dynamic processes which are related to solar terrestrial physics. The topics addressed in this book cover solar MHD and generation of acoustic waves, as well as physical parameters that are suited to describing solar activity and could serve as proxies for space weather forecasting. The influence of solar activity (radiation and solar wind) on telecommunication systems, satellite missions etc. is also discussed. In short, contribution reports are given on various topics in solar physics. The book covers solar physics from the photosphere to space weather influences. The intended level of readership is aimed at students working in this or related fields, professionals, and astronomers who wish to acquire some basic knowledge in the field of solar terrestrial relations, which is provided in the review articles.
This book describes the tectonic landforms resulting from major internal and external forces acting on the outer layers of solid bodies throughout the Solar System. It presents a detailed survey of tectonic structures at a range of length scales found on Mercury, Venus, the Moon, Mars, the outer planet satellites, and asteroids. A diverse range of models for the sources of tectonic stresses acting on silicate and icy crusts is outlined, comparing processes acting throughout the Solar System. Rheological and mechanical properties of planetary crusts and lithospheres are discussed to understand how and why tectonic stresses manifest themselves differently on various bodies. Results from fault population data are assessed in detail. The book provides methods for mapping and analyzing planetary tectonic features, and is illustrated with diagrams and spectacular images returned by manned and robotic spacecraft. It forms an essential reference for researchers and students in planetary geology and tectonics.
This 2007 volume presents the lectures from the sixteenth Winter School of the Instituto de Astrofisica de Canarias, which was dedicated to extrasolar planets. Research into extrasolar planets is one of the most exciting fields of astrophysics, and the past decade has seen a research leap from speculations on the existence of planets orbiting other stars to the discovery of around 200 planets to date. The book covers a wide range of issues, from the state-of-the-art observational techniques used to detect extrasolar planets, to the characterizations of these planets, and the techniques used in the remote detection of life. It also looks at the insights we can gain from our own Solar System, and how we can apply them. The contributors, all of high-standing in the field, provide a balanced and varied introduction to extrasolar planets for research astronomers and graduate students, bridging theoretical developments and observational advances.
The beating heart of the sun is the very pulse of life on earth.
And from the ancients who plotted its path at Stonehenge to the
modern scientists who unraveled the nuclear fusion reaction that
turns mass into energy, humankind has sought to solve its
mysteries. In this lively biography of the sun, Bob Berman ranges
from its stellar birth to its spectacular future death with a focus
on the wondrous and enthralling, and on the heartbreaking
sacrifice, laughable errors, egotistical battles, and brilliant
inspirations of the people who have tried to understand its power.
Extensively revised and updated, this new edition of David A. Rothery's acclaimed geological guide to the outer solar system includes results and close-up color and black and white images from the 1995-1999 Galileo mission to Jupiter and from the Voyager space probe. Rothery, a noted planetary scientist, explains the geological aspects of the major satellites of the outer bodies, from Jupiter and Neptune to the Pluto-Charon system. Rothery discusses their similarities and differences, and reveals how they resemble Earth-like planets. This fascinating book is written in an introductory style ideal for first or second year degree courses. Amateur geologists and astronomers will also find its insights rewarding. Reviews of the First Edition: 'The depth and authority of the treatment of physical geological processes makes this a good introduction to the outer satellites for undergraduate students, while the clarity of the text ensures that things do not become too complicated for less expert readers.' Lionel Wilson, Times Higher Education Supplement 'Rothery brings these satellites to life.' David Hughes, New Scientist
Chondrites are the largest group of meteorites. They can provide unique insights into the origins and early evolution of our Solar System, and even into the relationships between our Solar System and other stars in the vicinity of our Sun. The largest structural components of most chondrites are the glass-bearing chondrules, and there are numerous theories for their origin. This clear and systematic text summarizes the ideas surrounding the origin and history of chondrules and chondrites, drawing on research from the various scientific disciplines involved. With citations to a large number of published papers on the topic, it forms a comprehensive bibliography of the key research areas, and extensive illustrations provide a clear visual representation of the scientific theories. This text will be a valuable reference for graduate students and researchers in planetary science, geology, and astronomy.
Planetary Surface Processes is the first advanced textbook to cover the full range of geologic processes that shape the surfaces of planetary-scale bodies. Using a modern, quantitative approach, this book reconsiders geologic processes outside the traditional terrestrial context. It highlights processes that are contingent upon Earth's unique circumstances and processes that are universal. For example, it shows explicitly that equations predicting the velocity of a river are dependent on gravity: traditional geomorphology textbooks fail to take this into account. This textbook is a one-stop source of information on planetary surface processes, providing readers with the necessary background to interpret new data from NASA, ESA and other space missions. Based on a course taught by the author at the University of Arizona for 25 years, it is aimed at advanced students, and is also an invaluable resource for researchers, professional planetary scientists and space-mission engineers.
This 2002 introduction to the use of radar for remote sensing of natural surfaces provides the reader with a thorough grounding in practical applications, focusing particularly on terrestrial studies that may be extended to other planets. An historical overview of the subject is followed by an introduction to the nomenclature and methodology pertaining to radar data collection, image interpretation and surface roughness analysis. The author then presents a summary (illustrated with black and white examples from the natural environment) of theoretical explanations for the backscatter properties of continuous rough surfaces, collections of discrete objects, and layered terrain. Case studies of radar surveys of the Moon, Mercury, Venus and Mars complete the book. The level is appropriate for students and professionals across a broad range of scientific disciplines including Earth and planetary sciences, electrical engineering, and remote sensing. Particular emphasis is given to practical geological and geophysical studies of the terrestrial planets.
Image registration employs digital image processing in order to bring two or more digital images into precise alignment for analysis and comparison. Accurate registration algorithms are essential for creating mosaics of satellite images and tracking changes on the planet's surface over time. Bringing together invited contributions from thirty-six distinguished researchers, the book presents a detailed overview of current research and practice in the application of image registration to remote sensing imagery. Chapters cover the problem definition, theoretical issues in accuracy and efficiency, fundamental algorithms, and real-world case studies of image registration software applied to imagery from operational satellite systems. This book provides a comprehensive and practical overview for Earth and space scientists, presents image processing researchers with a summary of current research, and can be used for specialised graduate courses.
Orbiting at the edge of the outer Solar System, Pluto is an intriguing object in astronomy. Since the fascinating events surrounding its discovery, it has helped increase our understanding of the origin and evolution of the Solar System, and raised questions about the nature and benefits of scientific classification. This is a timely and exciting account of Pluto and its satellites. The author uses Pluto as a case study to discuss discovery in astronomy, how remote astronomical bodies are investigated, and the role of classification in science by discussing Pluto's recent classification as a dwarf planet. Besides Pluto, the book also explores the rich assortment of bodies that constitute the Edgeworth-Kuiper Belt, of which Pluto is the largest innermost member. Richly illustrated, this text is written for general readers, amateur astronomers and students alike. Boxed text provides more advanced information especially for readers who wish to delve deeper into the subject.
This unique collaboration between a classicist and physicist at the University of Illinois at Chicago is the first work to combine the evidence from both China and Rome for the spectacular daylight comet of 44 BC, perhaps the most famous comet in antiquity. This investigation, which also examines allusions to this comet in astrological literature from later antiquity, sheds new light on the significance of the comet as a powerful symbol in the political propaganda that launched Augustus' career.
This book is a comprehensive advancement about the understanding of the volcanology of Mars in all its aspects, from its primary formation to its evolution in time, from the smaller structures to the bigger structures. It discusses the implications of volcanism in the general environmental and geological context of Mars. The book is validating the Southern Giant Impact Hypothesis explaining the formation of Mars in an interdisciplinary approach, including mineralogical, geochemical, volcanological as well as geomorphological information. Implications for future explorations in terms of resources are provided. This book serves as a textbook for undergraduate and graduate level to foster new basic research in the field of planetary volcanology and is a new guide for future missions toward a volcanic world, including new detailed information for the general audience who is always keen to know more about the history of Mars and its large volcanoes. The book also presents an updated situation about the water resources of the planet.
Planetary Crusts explains how and why solid planets and satellites develop crusts. Extensively referenced and annotated, it presents a geochemical and geological survey of the crusts of the Moon, Mercury, Venus, Earth and Mars, the asteroid Vesta, and several satellites like Io, Europa, Ganymede, Titan and Callisto. After describing the nature and formation of solar system bodies, the book presents a comparative investigation of different planetary crusts and discusses many crustal controversies. The authors propose the theory of stochastic processes dominating crustal development, and debate the possibility of Earth-like planets existing elsewhere in the cosmos. Written by two leading authorities on the subject, this book presents an extensive survey of the scientific problems of crustal development, and is a key reference for researchers and students in geology, geochemistry, planetary science, astrobiology and astronomy.
During its five-billion-year history, Earth has been hit countless times by asteroids and meteorites. Over 150 crater-producing events have been identified, and this 1994 book describes all 139 sites worldwide at which evidence of the impacts can be seen. They range in age from recent craters formed this century to the highly eroded billion-year-old ancient craters. Some are spectacular to visit, such as the Barringer Crater in Arizona, the ring-shaped mountains of Gosses Bluff, Australia, and the huge crater at Ries in Germany. For each site there is a summary table giving location, size, age and present condition. Maps are included where necessary. The author has visited many of the sites and his photographs enrich this thorough survey. Meteorite craters are fascinating to visit, so the descriptions include guidance about access and suggested itineraries for the large structures.
This book describes the tectonic landforms resulting from major internal and external forces acting on the outer layers of solid bodies throughout the Solar System. It presents a detailed survey of tectonic structures at a range of length scales found on Mercury, Venus, the Moon, Mars, the outer planet satellites, and asteroids. A diverse range of models for the sources of tectonic stresses acting on silicate and icy crusts is outlined, comparing processes acting throughout the Solar System. Rheological and mechanical properties of planetary crusts and lithospheres are discussed to understand how and why tectonic stresses manifest themselves differently on various bodies. Results from fault population data are assessed in detail. The book provides methods for mapping and analyzing planetary tectonic features, and is illustrated with diagrams and spectacular images returned by manned and robotic spacecraft. It forms an essential reference for researchers and students in planetary geology and tectonics.
Jupiter is an extraordinarily colourful and dynamic planet. Over minutes, one can watch tiny shadows cast by its moons slide over its surface; over days and weeks parades of diverse, giant swirling storms can be seen to move and evolve. It is because of this richness of visual and physical properties that Jupiter has intrigued amateur and professional astronomers and has been the goal of several space missions. This highly illustrated volume provides a comprehensive and accessible account of Jupiter and its satellites. It reviews systematic telescopic observations that have stretched over more than a hundred years, in addition to modern observations and theories, and the wealth of data from the Pioneer, Voyager and Ulysses space missions. As well as a thorough survey of the planet's atmosphere, this volume presents an up-to-date account of our present knowledge of Jupiter's satellites and magnetosphere, at a level accessible to the non-specialist. This volume provides the definitive account of Jupiter for advanced amateur astronomers, professional astronomers and planetary scientists.
Astrobiology involves the study of the origin and history of life on Earth, planets and moons where life may have arisen, and the search for extraterrestrial life. It combines the sciences of biology, chemistry, palaeontology, geology, planetary physics and astronomy. This textbook brings together world experts in each of these disciplines to provide the most comprehensive coverage of the field currently available. Topics cover the origin and evolution of life on Earth, the geological, physical and chemical conditions in which life might arise and the detection of extraterrestrial life on other planets and moons. The book also covers the history of our ideas on extraterrestrial life and the origin of life, as well as the ethical, philosophical and educational issues raised by astrobiology. Written to be accessible to students from diverse backgrounds, this text will be welcomed by advanced undergraduates and graduates who are taking astrobiology courses.
Babylon to Voyager and Beyond covers planetary research from the time of the Babylonians and Ancient Greeks through those of Kepler, Galileo and Newton to the modern era of space exploration. It outlines the key observational discoveries and theoretical developments in their historical context, covering not only the numerous successes but also the main failures. Planetary astronomy has come a long way since the Babylonians used their extensive numerical skills to predict the positions of the moon and planets. That progress is the story of this book, ending, as it does, with the considerable discoveries of the space age, and the discoveries of planets around other stars. This account will appeal to both amateur and professional astronomers, as well as those with an interest in the history of science. |
You may like...
A Brief History Of Black Holes - And Why…
Dr. Becky Smethurst
Paperback
Lunar Reconnaissance Orbiter Mission
R R Vondrak, J W Keller
Hardcover
R4,720
Discovery Miles 47 200
Solar System Astrophysics - Planetary…
Eugene F. Milone, William J.F Wilson
Hardcover
R2,509
Discovery Miles 25 090
|