![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Earth & environment > Earth sciences > Meteorology > General
A SUNDAY TIMES NATURE BOOK OF THE YEAR A nature diary by award-winning novelist, nature writer and hit podcaster Melissa Harrison, following her journey from urban south London to the rural Suffolk countryside. 'A writer of great gifts.' Robert Macfarlane 'The journal of a writer to compare to Thomas Hardy. Melissa Harrison is among our most celebrated nature writers.' John Carey, The Times A Londoner for over twenty years, moving from flat to Tube to air-conditioned office, Melissa Harrison knew what it was to be insulated from the seasons. Adopting a dog and going on daily walks helped reconnect her with the cycle of the year and the quiet richness of nature all around her: swifts nesting in a nearby church; ivy-leaved toadflax growing out of brick walls; the first blackbird's song; an exhilarating glimpse of a hobby over Tooting Common. Moving from scrappy city verges to ancient, rural Suffolk, where Harrison eventually relocates, this diary - compiled from her beloved Nature Notebook column in The Times - maps her joyful engagement with the natural world and demonstrates how we must first learn to see, and then act to preserve, the beauty we have on our doorsteps - no matter where we live. A perceptive and powerful call-to-arms written in mesmerising prose, The Stubborn Light of Things confirms Harrison as a central voice in British nature writing.
Lewis Fry Richardson dreamt that scientific weather prediction would one day become a practical reality. Before his ideas could bear fruit several advances were needed: better understanding of the dynamics of the atmosphere; stable computational algorithms to integrate the equations; regular observations of the free atmosphere; and powerful automatic computer equipment. By 1950 advances in all these fronts were sufficient to permit the first computer forecast to be made. Over the ensuing fifty years progress in numerical weather prediction has been dramatic. Weather prediction and climate modelling have now reached a high level of sophistication. This book, first published in 2006, tells the story of Richardson's trial forecast, and the fulfilment of his dream of practical numerical weather forecasting. It includes a complete reconstruction of Richardson's forecast, and analyses in detail the causes of his failure. This will appeal to everyone involved in numerical weather forecasting, from researchers and graduate students to professionals.
The topic of predictability in weather and climate has advanced significantly in recent years, both in understanding the phenomena that affect weather and climate and in techniques used to model and forecast them. This book, first published in 2006, brings together some of the world's leading experts on predicting weather and climate. It addresses predictability from the theoretical to the practical, on timescales from days to decades. Topics such as the predictability of weather phenomena, coupled ocean-atmosphere systems and anthropogenic climate change are among those included. Ensemble systems for forecasting predictability are discussed extensively. Ed Lorenz, father of chaos theory, makes a contribution to theoretical analysis with a previously unpublished paper. This well-balanced volume will be a valuable resource for many years. High-calibre chapter authors and extensive subject coverage make it valuable to people with an interest in weather and climate forecasting and environmental science, from graduate students to researchers.
Originally published in 1958 as part of the Cambridge Monographs on Physics series, this book was intended to give physicists an introduction to an aspect of atmospheric physics. Goody gives an overview of the history of the study of the stratosphere, and outlines its chemical composition and its role in Earth's weather. This book will be of value to anyone with an interest in the history of the study of the atmosphere or in geophysics more generally.
The Asian monsoon is one of the most dramatic climatic phenomena on Earth, with far reaching environmental and societal effects. Almost two thirds of humanity lives within regions influenced by the monsoon. With the emerging Asian economies, the importance of the region to the global economy has never been more marked. The Asian Monsoon describes the evolution of the monsoon, and proposes a connection between the tectonic evolution of the solid Earth and monsoon intensity. The authors explain how the monsoon has been linked to orbital processes and thus to other parts of the global climate system, especially glaciation. Finally, they summarize how monsoon evolution since the last Ice Age has impacted human societies, as well as commenting on the potential impact of future climate change. This book presents a multi-disciplinary overview of the monsoon for advanced students and researchers in atmospheric science, climatology, oceanography, geophysics, and geomorphology.
There have been many excellent books written on the subject of plastic deformation in solids, but rarely can one find a textbook on this subject. "Plasticity Modeling & Computation" is a textbook written specifically for students who want to learn the theoretical, mathematical, and computational aspects of inelastic deformation in solids. It adopts a simple narrative style that is not mathematically overbearing, and has been written to emulate a professor giving a lecture on this subject inside a classroom. Each section is written to provide a balance between the relevant equations and the explanations behind them. Where relevant, sections end with one or more exercises designed to reinforce the understanding of the "lecture." Color figures enhance the presentation and make the book very pleasant to read. For professors planning to use this textbook for their classes, the contents are sufficient for Parts A and B that can be taught in sequence over a period of two semesters or quarters.
Water engineers require knowledge of stochastic, frequency concepts, uncertainty analysis, risk assessment, and the processes that predict unexpected events. This book presents the basics of stochastic, risk and uncertainty analysis, and random sampling techniques in conjunction with straightforward examples which are solved step by step. In addition, appropriate Excel functions are included as an alternative to solve the examples, and two real case studies is presented in the last chapters of book.
Landslides and debris flows belong to the most dangerous natural hazards in many parts of the world. Despite intensive research, these events continue to result in human suffering, property losses, and environmental degradation every year. Better understanding of the mechanisms and processes of landslides and debris flows will help make reliable predictions, develop mitigation strategies and reduce vulnerability of infrastructure. This book presents contributions to the workshop on Recent Developments in the Analysis, Monitoring and Forecast of Landslides and Debris Flow, in Vienna, Austria, September 9, 2013. The contributions cover a broad spectrum of topics from material behavior, physical modelling over numerical simulation to applications and case studies. The workshop is a joint event of three research projects funded by the European Commission within the 7th Framework Program: MUMOLADE (Multiscale modelling of landslides and debris flows, www.mumolade.com), REVENUES (Numerical Analysis of Slopes with Vegetations, http://www.revenues-eu.com) and HYDRODRIL (Integrated Risk Assessment of Hydrologically-Driven Landslides, www.boku.ac.at/igt/).
The book provides suitable methods for the simulations of boundary value problems of geotechnical installation processes with reliable prediction for the deformation behavior of structures in static or dynamic interaction with the soil. It summarizes the basic research of a research group from scientists dealing with constitutive relations of soils and their implementations as well as contact element formulations in FE-codes. Numerical and physical experiments are presented providing benchmarks for future developments in this field. Boundary value problems have been formulated and solved with the developed tools in order to show the effectivity of the methods. Parametric studies of geotechnical installation processes in order to identify the governing parameters for the optimization of the process are given in such a way that the findings can be recommended to practice for further use. For many design engineers in practice the assessment of the serviceability of nearby structures due to geotechnical installation processes is a very challenging task. Some hints about possible effects and their consideration are given in this book which may provide a help for such estimations which are still not possible to be given in a satisfactory manner.
This paper collection is the second volume of the LNMOB series on Road Vehicle Automation. The book contains a comprehensive review of current technical, socio-economic, and legal perspectives written by experts coming from public authorities, companies and universities in the U.S., Europe and Japan. It originates from the Automated Vehicle Symposium 2014, which was jointly organized by the Association for Unmanned Vehicle Systems International (AUVSI) and the Transportation Research Board (TRB) in Burlingame, CA, in July 2014. The contributions discuss the challenges arising from the integration of highly automated and self-driving vehicles into the transportation system, with a focus on human factors and different deployment scenarios. This book is an indispensable source of information for academic researchers, industrial engineers, and policy makers interested in the topic of road vehicle automation.
This volume offers a comprehensive survey and a close analysis of efforts to develop actionable climate information in support of vital decisions for climate adaptation, risk management and policy. Arising from submissions and discussion at the 2011 Open Science Conference (OSC) of the World Climate Research Program (WCRP), the book addresses research and intellectual challenges which span the full range of Program activities.
This book presents a selection of the best papers from the HEaRT 2013 conference, held in Cosenza, Italy, which provided a valuable forum for engineers and architects, researchers and educators to exchange views and findings concerning the technological history, construction features and seismic behavior of historical timber-framed walls in the Mediterranean countries. The topics covered are wide ranging and include historical aspects and examples of the use of timber-framed construction systems in response to earthquakes, such as the gaiola system in Portugal and the Bourbon system in southern Italy; interpretation of the response of timber-framed walls to seismic actions based on calculations and experimental tests; assessment of the effectiveness of repair and strengthening techniques, e.g., using aramid fiber wires or sheets; and modelling analyses. In addition, on the basis of case studies, a methodology is presented that is applicable to diagnosis, strengthening and improvement of seismic performance and is compatible with modern theoretical principles and conservation criteria. It is hoped that, by contributing to the knowledge of this construction technique, the book will help to promote conservation of this important component of Europe’s architectural heritage.
This book presents a comprehensive summary of research on tropical cyclone variability at various time scales, from intraseasonal and interannual to interdecadal and centennial. It covers the fundamental theory, statistics and numerical modelling techniques used when considering climate variability in relation to tropical cyclone activity. Major climate oscillations including the Madden-Julian, El Nino, Atlantic Meridional Mode, and Pacific Decadal oscillations are covered, and their impacts on tropical cyclone activity in the Pacific and Atlantic oceans are discussed. Hurricane landfalls in the United States, Caribbean and East Asia are also considered. Climate models and numerical simulations are used to show how prediction models of tropical cyclones are developed, while looking to the future, particular attention is paid to predicting how tropical cyclones will change in response to increased concentrations of greenhouse gases. This book ideal for researchers and practitioners in atmospheric science, climatology, oceanography and civil and environmental engineering.
Although devoted to his parish, Leonard Jenyns (1800 93) combined his clerical duties with keen research into the natural world around him. His numerous publications include A Manual of British Vertebrate Animals (1835) and Observations in Natural History (1846), both of which are reissued in this series. This 1858 work is based on nineteen years of meticulous observation of Cambridgeshire weather, including trends in atmospheric pressure and precipitation. Jenyns' careful recording of his surroundings supplies the raw data for the text and many informative tables. The geological position of Swaffam Bulbeck, where most of the observations were made, is briefly discussed along with other factors bearing upon the climate of Cambridgeshire more generally. Throwing light on how meteorological observation was conducted and interpreted, the work reflects a growing interest in the topic in Victorian Britain."
Lectures in Meteorology is a comprehensive reference book for meteorologists and environmental scientists to look up material on the thermodynamics, dynamics and chemistry of the troposphere. The lectures demonstrate how to derive/develop equations – an essential tool for model development. All chapters present applications of the material including numerical models. The lectures are written in modular form, i.e. they can be used at the undergraduate level for classes covered by the chapters or at the graduate level as a comprehensive, intensive course. The student/instructor can address chapters 2 (thermodynamics) and 4 (radiation) in any order. They can also switch the order of chapter 5 (chemistry) and 6 (dynamics). Chapter 7 (climatology and climate) requires an understanding of all chapters. Chapter 3 (cloud physics) needs basics from chapter 2 to understand the cloud microphysical processes. The governing conservation equations for trace constituents, dry air, water substances, total mass, energy, entropy and momentum are presented, including simplifications and their application in models. A brief introduction to atmospheric boundary layer processes is presented as well. Basic principles of climatology discussed include analysis methods, atmospheric waves and their analytical solutions, tropical and extra-tropical cyclones, classical and non-classical mesoscale circulations, and the global circulation. The atmospheric chemistry section encompasses photolytic and gas-phase processes, aqueous chemistry, aerosol processes, fundamentals of biogeochemical cycles and the ozone layer. Solar and terrestrial radiation; major absorber; radiation balance; radiative equilibrium; radiative-convective equilibrium; and basics of molecular, aerosol and cloud adsorption and scattering and their use in remote sensing are also presented.
Fluxes of trace gases, water and energy - the 'breathing of the biosphere' - are controlled by a large number of interacting physical, chemical, biological and ecological processes. In this interdisciplinary book, the authors provide the tools to understand and quantitatively analyse fluxes of energy, organic compounds such as terpenes, and trace gases including carbon dioxide, water vapour and methane. It first introduces the fundamental principles affecting the supply and demand for trace gas exchange at the leaf and soil scales: thermodynamics, diffusion, turbulence and physiology. It then builds on these principles to model the exchange of water, carbon dioxide, terpenes and stable isotopes at the ecosystem scale. Detailed mathematical derivations of commonly used relations in biosphere-atmosphere interactions are provided for reference in appendices. An accessible introduction for graduate students and a key resource for researchers in related fields, such as atmospheric science, hydrology, meteorology, climate science, biogeochemistry and ecosystem ecology.
In 2013 several scientific activities have been devoted to mathematical researches for the study of planet Earth. The current volume presents a selection of the highly topical issues presented at the workshop “Mathematical Models and Methods for Planet Earthâ€, held in Roma (Italy), in May 2013. The fields of interest span from impacts of dangerous asteroids to the safeguard from space debris, from climatic changes to monitoring geological events, from the study of tumor growth to sociological problems. In all these fields the mathematical studies play a relevant role as a tool for the analysis of specific topics and as an ingredient of multidisciplinary problems. To investigate these problems we will see many different mathematical tools at work: just to mention some, stochastic processes, PDE, normal forms, chaos theory.
Schumann resonance has been studied for more than half a century. The field became popular among researchers of the terrestrial environment using natural sources of electromagnetic radiation—lightning strokes, primarily—and now many Schumann observatories have been established around the world. A huge number of publications can be found in the literature, the most recent collection of which was presented in a special Schumann resonance section of the journal Radio Science in 2007. The massive publications, however, impede finding information about how to organize measurements and start observations of global electromagnetic resonance. Relevant information is scattered throughout many publications, which are not always available. The goal of this book is to collect all necessary data in a single edition in order to describe the demands of the necessary equipment and the field-site as well as the impact of industrial and natural interference, and to demonstrate typical results and obstacles often met in measurements. The authors not only provide representative results but also describe unusual radio signals in the extremely low-frequency (ELF) band and discuss signals in the adjacent frequency ranges.
This book presents a history of roundabouts, an introduction to their design, calculations of their capacity and traffic-safety features. It describes the key features of standard roundabouts and their limitations. Alternative types of roundabouts are a fairly recent development and have only been implemented in a few countries to date. The book illustrates a broad variety of these recent alternative types of roundabouts, as well as proposed types still in the development phase, explaining for each the specific needs it meets, its advantages and drawbacks. In closing, the book offers an outlook on the role of roundabouts in future street traffic.
Major natural hazards have sparked growing public concern worldwide. This book provides new information on Typhoon Impact and Crisis Management using satellite remote sensing technology, linking the natural sciences and social sciences in typhoon studies. It examines remote sensing observations of typhoons (hurricanes), typhoon impacts on the environment, typhoon impacts on marine ecosystems, typhoon impacts and global changes, typhoon (hurricane) impacts on economics, and crisis management for typhoon (hurricane) disasters.
General circulation models (GCMs), which define the fundamental dynamics of atmospheric circulation, are nowadays used in various fields of atmospheric science such as weather forecasting, climate predictions and environmental estimations. The Second Edition of this renowned work has been updated to include recent progress of high resolution global modeling. It also contains for the first time aspects of high-resolution global non-hydrostatic models that the author has been studying since the publication of the first edition. Some highlighted results from the Non-hydrostatic ICosahedral Atmospheric Model (NICAM) are also included. The author outlines the theoretical concepts, simple models and numerical methods for modeling the general circulation of the atmosphere. Concentrating on the physical mechanisms responsible for the development of large-scale circulation of the atmosphere, the book offers comprehensive coverage of an important and rapidly developing technique used in the atmospheric science. Dynamic interpretations of the atmospheric structure and their aspects in the general circulation model are described step by step.
This monograph provides state-of-the-art theoretical and computational findings from investigations on physical and chemical dissolution front instability problems in porous media, based on the author’s own work. Although numerical results are provided to complement theoretical ones, the focus of this monograph is on the theoretical aspects of the topic and those presented in this book are applicable to a wide range of scientific and engineering problems involving the instability of nonlinear dynamic systems. To appeal to a wider readership, common mathematical notations are used to derive the theoretical solutions. The book can be used either as a useful textbook for postgraduate students or as a valuable reference book for computational scientists, mathematicians, engineers and geoscientists.
Climate change highlights the challenges for long-term policy making in the face of persistent and irreducible levels of uncertainties. It calls for the development of flexible approaches, innovative governance and other elements that contribute to effective and adaptive decision-making. Exploring these new approaches is also a challenge for those involved in climate research and development of adaptation policy. The book provides a dozen real-life examples of adaptation decision making in the form of case studies: * Water supply management in Portugal, England and Wales and Hungary * Flooding, including flood risk in Ireland, coastal flooding and erosion in Southwest France, and flood management in Australia's Hutt River region * Transport and utilities, including the Austrian Federal railway system, public transit in Dresden, and Quebec hydro-electric power * Report examining communication of large numbers of climate scenarios in Dutch climate adaptation workshops.
First published in 1919 as part of the Cambridge Nature Study Series, and originally intended for schoolchildren, this book introduces some of the basic concepts of meteorology. The text is illustrated with photographs and illustrations of weather systems and necessary meteorological equipment, and Chapman suggests exercises and topics for discussion in class. This book will be of value to anyone with an interest in the history of education.
The key highlights of the book include an innovative rainfall classification methodology based on stormwater quality to support the planning and design of stormwater treatment systems. Additionally, this book provides a practical approach to effective stormwater treatment design and development of a methodology for rainfall selection to optimize stormwater treatment based on both its quality and quantity. The case study presented in this book evaluates how pollutant buildup on urban surfaces and stormwater runoff quality varies with a range of catchment characteristics based on different rainfall types. The information presented will be of particular interest to practitioners such as stormwater-treatment designers, urban planners and hydrologic and stormwater-quality model developers since the outcomes presented provide practical approaches to and recommendations for urban stormwater-quality improvement. Readers will benefit from a state-of-the-art critical review of literature on urban stormwater quality, an in-depth discussion on stormwater-quality processes providing guidance for engineering practice such as stormwater treatment design and model development, a comprehensive overview on the application of multivariate data analysis techniques and a paradigm of the integrated use of commercial models and mathematical equations to undertake a comprehensive, urban stormwater-quality investigation. |
You may like...
Global Change Scenarios of the 21st…
J. Alcamo, R. Leemans, …
Hardcover
R4,336
Discovery Miles 43 360
Precipitation - Earth Surface Responses…
Jesus Rodrigo-Comino
Paperback
R3,616
Discovery Miles 36 160
The Arctic - A Barometer of Global…
Neloy Khare, Rajni Khare
Paperback
R2,821
Discovery Miles 28 210
Artificial Intelligence of Things for…
Rajeev Kumar Gupta, Arti Jain, …
Hardcover
R6,683
Discovery Miles 66 830
|