![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > Applications of computing > Artificial intelligence > General
This book presents the latest research advances in complex network structure analytics based on computational intelligence (CI) approaches, particularly evolutionary optimization. Most if not all network issues are actually optimization problems, which are mostly NP-hard and challenge conventional optimization techniques. To effectively and efficiently solve these hard optimization problems, CI based network structure analytics offer significant advantages over conventional network analytics techniques. Meanwhile, using CI techniques may facilitate smart decision making by providing multiple options to choose from, while conventional methods can only offer a decision maker a single suggestion. In addition, CI based network structure analytics can greatly facilitate network modeling and analysis. And employing CI techniques to resolve network issues is likely to inspire other fields of study such as recommender systems, system biology, etc., which will in turn expand CI's scope and applications. As a comprehensive text, the book covers a range of key topics, including network community discovery, evolutionary optimization, network structure balance analytics, network robustness analytics, community-based personalized recommendation, influence maximization, and biological network alignment. Offering a rich blend of theory and practice, the book is suitable for students, researchers and practitioners interested in network analytics and computational intelligence, both as a textbook and as a reference work.
Posited by Professor Leon Chua at UC Berkeley more than 40 years ago, memristors, a nonlinear element in electrical circuitry, are set to revolutionize computing technology. Finally discovered by scientists at Hewlett-Packard in 2008, memristors generate huge interest because they can facilitate nanoscale, real-time computer learning, as well as due to their potential of serving as instant memories. This edited volume bottles some of the excitement about memristors, providing a state-of-the-art overview of neuromorphic memristor theory, as well as its technological and practical aspects. Based on work presented to specialist memristor seminars organized by the editors, the volume takes readers from a general introduction the fundamental concepts involved, to specialized analysis of computational modeling, hardware, and applications. The latter include the ground-breaking potential of memristors in facilitating hybrid wetware-hardware technologies for in-vitro experiments. The book evinces, and devotes space to the discussion of, the socially transformative potential of memristors, which could be as pervasive as was the invention of the silicon chip: machines that learn in the style of brains, are a computational Holy Grail. With contributions from key players in a fast-moving field, this edited volume is the first to cover memristors in the depth needed to trigger the further advances that surely lie around the corner.
This book contains the proceedings of the 11th FSR (Field and Service Robotics), which is the leading single-track conference on applications of robotics in challenging environments. This conference was held in Zurich, Switzerland from 12-15 September 2017. The book contains 45 full-length, peer-reviewed papers organized into a variety of topics: Control, Computer Vision, Inspection, Machine Learning, Mapping, Navigation and Planning, and Systems and Tools. The goal of the book and the conference is to report and encourage the development and experimental evaluation of field and service robots, and to generate a vibrant exchange and discussion in the community. Field robots are non-factory robots, typically mobile, that operate in complex and dynamic environments: on the ground (Earth or other planets), under the ground, underwater, in the air or in space. Service robots are those that work closely with humans to help them with their lives. The first FSR was held in Canberra, Australia, in 1997. Since that first meeting, FSR has been held roughly every two years, cycling through Asia, Americas, and Europe.
Although they are believed to be unsolvable in general, tractability results suggest that some practical NP-hard problems can be efficiently solved. Combinatorial search algorithms are designed to efficiently explore the usually large solution space of these instances by reducing the search space to feasible regions and using heuristics to efficiently explore these regions. Various mathematical formalisms may be used to express and tackle combinatorial problems, among them the constraint satisfaction problem (CSP) and the propositional satisfiability problem (SAT). These algorithms, or constraint solvers, apply search space reduction through inference techniques, use activity-based heuristics to guide exploration, diversify the searches through frequent restarts, and often learn from their mistakes. In this book the author focuses on knowledge sharing in combinatorial search, the capacity to generate and exploit meaningful information, such as redundant constraints, heuristic hints, and performance measures, during search, which can dramatically improve the performance of a constraint solver. Information can be shared between multiple constraint solvers simultaneously working on the same instance, or information can help achieve good performance while solving a large set of related instances. In the first case, information sharing has to be performed at the expense of the underlying search effort, since a solver has to stop its main effort to prepare and commu nicate the information to other solvers; on the other hand, not sharing information can incur a cost for the whole system, with solvers potentially exploring unfeasible spaces discovered by other solvers. In the second case, sharing performance measures can be done with little overhead, and the goal is to be able to tune a constraint solver in relation to the characteristics of a new instance - this corresponds to the selection of the most suitable algorithm for solving a given instance. The book is suitable for researchers, practitioners, and graduate students working in the areas of optimization, search, constraints, and computational complexity.
This collection of papers, published in honour of Hector J. Levesque on the occasion of his 60th birthday, addresses a number of core areas in the field of knowledge representation and reasoning. In a broad sense, the book is about knowledge and belief, tractable reasoning, and reasoning about action and change. More specifically, the book contains contributions to Description Logics, the expressiveness of knowledge representation languages, limited forms of inference, satisfiablity (SAT), the logical foundations of BDI architectures, only-knowing, belief revision, planning, causation, the situation calculus, the action language Golog, and cognitive robotics.
This volume collects recent advances in nonlinear delay systems, with an emphasis on constructive generalized Lyapunov and predictive approaches that certify stability properties. The book is written by experts in the field and includes two chapters by Miroslav Krstic, to whom this volume is dedicated. This volume is suitable for all researchers in mathematics and engineering who deal with nonlinear delay control problems and students who would like to understand the current state of the art in the control of nonlinear delay systems.
Information is an important concept that is studied extensively across a range of disciplines, from the physical sciences to genetics to psychology to epistemology. Information continues to increase in importance, and the present age has been referred to as the "Information Age." One may understand information in a variety of ways. For some, information is found in facts that were previously unknown. For others, a fact must have some economic value to be considered information. Other people emphasize the movement through a communication channel from one location to another when describing information. In all of these instances, information is the set of characteristics of the output of a process. Yet Information has seldom been studied in a consistent way across different disciplines. "Information from Processes" provides a discipline-independent and precise presentation of both information and computing processes. Information concepts and phenomena are examined in an effort to understand them, given a hierarchy of information processes, where one process uses others. Research about processes and computing is applied to answer the question of what information can and cannot be produced, and to determine the nature of this information (theoretical information science). The book also presents some of the basic processes that are used in specific domains (applied information science), such as those that generate information in areas like reasoning, the evolution of informative systems, cryptography, knowledge, natural language, and the economic value of information.Written for researchers and graduate students in information science and related fields, "Information from Processes "details a unique information model independent from other concepts in computer or archival science, which is thus applicable to a wide range of domains. Combining theoretical and empirical methods as well as psychological, mathematical, philosophical, and economic techniques, Losee's book delivers a solid basis and starting point for future discussions and research about the creation and use of information."
This book presents new optimization approaches and methods and their application in real-world and industrial problems, and demonstrates how many of the problems arising in engineering, economics and other domains can be formulated as optimization problems. Constituting a comprehensive collection of extended contributions from the 9th International Workshop on Computational Optimization (WCO) held in Gdansk, Poland, September 11-14, 2016, the book discusses important applications such as job scheduling, wildfire modeling, parameter settings for controlling different processes, capital budgeting, data mining, finding the location of sensors in a given network, identifying the conformation of molecules, algorithm correctness, decision support system, and computer memory management. Further, it shows how to develop algorithms for these based on new intelligent methods like evolutionary computations, ant colony optimization and constraint programming. The book is a valuable resource for researchers and practitioners alike.
The volume, complexity, and irregularity of computational data in modern algorithms and simulations necessitates an unorthodox approach to computing. Understanding the facets and possibilities of soft computing algorithms is necessary for the accurate and timely processing of complex data. Research Advances in the Integration of Big Data and Smart Computing builds on the available literature in the realm of Big Data while providing further research opportunities in this dynamic field. This publication provides the resources necessary for technology developers, scientists, and policymakers to adopt and implement new paradigms in computational methods across the globe. The chapters in this publication advance the body of knowledge on soft computing techniques through topics such as transmission control protocol for mobile ad hoc networks, feature extraction, comparative analysis of filtering techniques, big data in economic policy, and advanced dimensionality reduction methods.
This research volume presents a sample of recent contributions related to the issue of quality-assessment for Web Based information in the context of information access, retrieval, and filtering systems. The advent of the Web and the uncontrolled process of documents' generation have raised the problem of declining quality assessment to information on the Web, by considering both the nature of documents (texts, images, video, sounds, and so on), the genre of documents ( news, geographic information, ontologies, medical records, products records, and so on), the reputation of information sources and sites, and, last but not least the actions performed on documents (content indexing, retrieval and ranking, collaborative filtering, and so on). The volume constitutes a compendium of both heterogeneous approaches and sample applications focusing specific aspects of the quality assessment for Web-based information for researchers, PhD students and practitioners carrying out their research activity in the field of Web information retrieval and filtering, Web information mining, information quality representation and management.
This volume introduces new approaches in intelligent control area from both the viewpoints of theory and application. It consists of eleven contributions by prominent authors from all over the world and an introductory chapter. This volume is strongly connected to another volume entitled "New Approaches in Intelligent Image Analysis" (Eds. Roumen Kountchev and Kazumi Nakamatsu). The chapters of this volume are self-contained and include summary, conclusion and future works. Some of the chapters introduce specific case studies of various intelligent control systems and others focus on intelligent theory based control techniques with applications. A remarkable specificity of this volume is that three chapters are dealing with intelligent control based on paraconsistent logics.
This book presents modeling methods and algorithms for data-driven prediction and forecasting of practical industrial process by employing machine learning and statistics methodologies. Related case studies, especially on energy systems in the steel industry are also addressed and analyzed. The case studies in this volume are entirely rooted in both classical data-driven prediction problems and industrial practice requirements. Detailed figures and tables demonstrate the effectiveness and generalization of the methods addressed, and the classifications of the addressed prediction problems come from practical industrial demands, rather than from academic categories. As such, readers will learn the corresponding approaches for resolving their industrial technical problems. Although the contents of this book and its case studies come from the steel industry, these techniques can be also used for other process industries. This book appeals to students, researchers, and professionals within the machine learning and data analysis and mining communities.
The success of a BCI system depends as much on the system itself as on the user's ability to produce distinctive EEG activity. BCI systems can be divided into two groups according to the placement of the electrodes used to detect and measure neurons firing in the brain. These groups are: invasive systems, electrodes are inserted directly into the cortex are used for single cell or multi unit recording, and electrocorticography (EcoG), electrodes are placed on the surface of the cortex (or dura); noninvasive systems, they are placed on the scalp and use electroencephalography (EEG) or magnetoencephalography (MEG) to detect neuron activity. The book is basically divided into three parts. The first part of the book covers the basic concepts and overviews of Brain Computer Interface. The second part describes new theoretical developments of BCI systems. The third part covers views on real applications of BCI systems.
This book gathers contributions on fuzzy neural control, intelligent and non-linear control, dynamic systems and cyber-physical systems. It presents the latest theoretical and practical results, including numerous applications of computational intelligence in various disciplines such as engineering, medicine, technology and the environment. The book is dedicated to Imre J. Rudas on his seventieth birthday.
Computational and mathematical models provide us with the opportunities to investigate the complexities of real world problems. They allow us to apply our best analytical methods to define problems in a clearly mathematical manner and exhaustively test our solutions before committing expensive resources. This is made possible by assuming parameter(s) in a bounded environment, allowing for controllable experimentation, not always possible in live scenarios. For example, simulation of computational models allows the testing of theories in a manner that is both fundamentally deductive and experimental in nature. The main ingredients for such research ideas come from multiple disciplines and the importance of interdisciplinary research is well recognized by the scientific community. This book provides a window to the novel endeavours of the research communities to present their works by highlighting the value of computational modelling as a research tool when investigating complex systems. We hope that the readers will have stimulating experiences to pursue research in these directions.
The recommendation of products, content and services cannot be considered newly born, although its widespread application is still in full swing. While its growing success in numerous sectors, the progress of the Social Web has revolutionized the architecture of participation and relationship in the Web, making it necessary to restate recommendation and reconciling it with "Collaborative Tagging," as the popularization of authoring in the Web, and "Social Networking," as the translation of personal relationships to the Web. Precisely, the convergence of recommendation with the above "Social Web" pillars is what motivates this book, which has collected contributions from well-known experts in the academy and the industry to provide a broader view of the problems that "Social Recommenders" might face with. If recommender systems have proven their key role in facilitating the user access to resources on the Web, when sharing resources has become social, it is natural for recommendation strategies in the Social Web era take into account the users' point of view and the relationships among users to calculate their predictions. This book aims to help readers to discover and understand the interplay among legal issues such as privacy; technical aspects such as interoperability and scalability; and social aspects such as the influence of affinity, trust, reputation and likeness, when the goal is to offer recommendations that are truly useful to both the user and the provider."
This book is dedicated to the memory of Professor Zdzis{\l}aw Pawlak who passed away almost six year ago. He is the founder of the Polish school of Artificial Intelligence and one of the pioneers in Computer Engineering and Computer Science with worldwide influence. He was a truly great scientist, researcher, teacher and a human being. This book prepared in two volumes contains more than 50 chapters. This demonstrates that the scientific approaches discovered by of Professor Zdzis{\l}aw Pawlak, especially the rough set approach as a tool for dealing with imperfect knowledge, are vivid and intensively explored by many researchers in many places throughout the world. The submitted papers prove that interest in rough set research is growing and is possible to see many new excellent results both on theoretical foundations and applications of rough sets alone or in combination with other approaches. We are proud to offer the readers this book.
This monograph deals with various visibility-based path and motion planning problems motivated by real-world applications such as exploration and mapping planetary surfaces, environmental surveillance using stationary or mobile robots, and imaging of global air/pollutant circulation. The formulation and solution of these problems call for concepts and methods from many areas of applied mathematics including computational geometry, set-covering, non-smooth optimization, combinatorial optimization and optimal control. Emphasis is placed on the formulation of new problems and methods of approach to these problems. Since geometry and visualization play important roles in the understanding of these problems, intuitive interpretations of the basic concepts are presented before detailed mathematical development. The development of a particular topic begins with simple cases illustrated by specific examples, and then progresses forward to more complex cases. The intended readers of this monograph are primarily students and researchers in engineering, computer science and applied mathematics. An understanding of the mathematical development of the main results requires only basic knowledge of mathematical analysis, control, and optimization theories. Some exercises with various degrees of difficulty are provided at the end of the main chapters. The material presented here may serve as a portion of an introductory course or seminar on visibility-based optimal path and motion planning problems with the objective of stimulating interest and further studies in this relatively new area.
This edited book presents the scientific outcomes of the 17th International Conference on Software Engineering, Artificial Intelligence Research, Management and Applications (SERA 2019) held on May 29-31, 2019 in Honolulu, Hawaii. The aim of the conference was to bring together researchers and scientists, businessmen and entrepreneurs, teachers, engineers, computer users and students to discuss the numerous fields of computer science and to share their experiences and exchange new ideas and information in a meaningful way. This book includes 13 of the conference's most promising papers featuring recent research in software engineering, management and applications
The amount of data used in the business world has been growing at a rapid and exponential rate. These large volumes of data have led not only to the rise of big data analytics, but to the need for improvements and advancements in the management of it. Recent Advances in Intelligent Technologies and Information Systems brings together current practices and innovations in the management and processing of diverse big data sets through technological integration. Focusing on concepts such as semantic technologies, open source tools, and soft computing, this book is an integral reference source for professionals, researchers, and practitioners interested in the application of technological advancements.
This book develops a coherent and quite general theoretical approach to algorithm design for iterative learning control based on the use of operator representations and quadratic optimization concepts including the related ideas of inverse model control and gradient-based design. Using detailed examples taken from linear, discrete and continuous-time systems, the author gives the reader access to theories based on either signal or parameter optimization. Although the two approaches are shown to be related in a formal mathematical sense, the text presents them separately as their relevant algorithm design issues are distinct and give rise to different performance capabilities. Together with algorithm design, the text demonstrates the underlying robustness of the paradigm and also includes new control laws that are capable of incorporating input and output constraints, enable the algorithm to reconfigure systematically in order to meet the requirements of different reference and auxiliary signals and also to support new properties such as spectral annihilation. Iterative Learning Control will interest academics and graduate students working in control who will find it a useful reference to the current status of a powerful and increasingly popular method of control. The depth of background theory and links to practical systems will be of use to engineers responsible for precision repetitive processes.
Autonomic computing and networking (ACN), a concept inspired by the human autonomic system, is a priority research area and a booming new paradigm in the field. Formal and Practical Aspects of Autonomic Computing and Networking: Specification, Development, and Verification outlines the characteristics, novel approaches of specification, refinement, programming and verification associated with ACN. The goal of ACN and the topics covered in this work include making networks and computers more self-organized, self- configured, self-healing, self-optimizing, self-protecting, and more. This book helpfully details the steps necessary towards realizing computer and network autonomy and its implications.
In the mid 1990s, Tim Berners-Lee had the idea of developing the World Wide Web into a "Semantic Web", a web of information that could be interpreted by machines in order to allow the automatic exploitation of data, which until then had to be done by humans manually. One of the first people to research topics related to the Semantic Web was Professor Rudi Studer. From the beginning, Rudi drove projects like ONTOBROKER and On-to-Knowledge, which later resulted in W3C standards such as RDF and OWL. By the late 1990s, Rudi had established a research group at the University of Karlsruhe, which later became the nucleus and breeding ground for Semantic Web research, and many of today's well-known research groups were either founded by his disciples or benefited from close cooperation with this think tank. In this book, published in celebration of Rudi's 60th birthday, many of his colleagues look back on the main research results achieved during the last 20 years. Under the editorship of Dieter Fensel, once one of Rudi's early PhD students, an impressive list of contributors and contributions has been collected, covering areas like Knowledge Management, Ontology Engineering, Service Management, and Semantic Search. Overall, this book provides an excellent overview of the state of the art in Semantic Web research, by combining historical roots with the latest results, which may finally make the dream of a "Web of knowledge, software and services" come true.
Recent advancements in the field of telecommunications, medical imaging and signal processing deal with signals that are inherently time varying, nonlinear and complex-valued. The time varying, nonlinear characteristics of these signals can be effectively analyzed using artificial neural networks. Furthermore, to efficiently preserve the physical characteristics of these complex-valued signals, it is important to develop complex-valued neural networks and derive their learning algorithms to represent these signals at every step of the learning process. This monograph comprises a collection of new supervised learning algorithms along with novel architectures for complex-valued neural networks. The concepts of meta-cognition equipped with a self-regulated learning have been known to be the best human learning strategy. In this monograph, the principles of meta-cognition have been introduced for complex-valued neural networks in both the batch and sequential learning modes. For applications where the computation time of the training process is critical, a fast learning complex-valued neural network called as a fully complex-valued relaxation network along with its learning algorithm has been presented. The presence of orthogonal decision boundaries helps complex-valued neural networks to outperform real-valued networks in performing classification tasks. This aspect has been highlighted. The performances of various complex-valued neural networks are evaluated on a set of benchmark and real-world function approximation and real-valued classification problems.
This book describes five qualitative investment decision-making methods based on the hesitant fuzzy information. They are: (1) the investment decision-making method based on the asymmetric hesitant fuzzy sigmoid preference relations, (2) the investment decision-making method based on the hesitant fuzzy trade-off and portfolio selection, (3) the investment decision-making method based on the hesitant fuzzy preference envelopment analysis, (4) the investment decision-making method based on the hesitant fuzzy peer-evaluation and strategy fusion, and (5) the investment decision-making method based on the EHVaR measurement and tail analysis. |
You may like...
Artificial Intelligence for Neurological…
Ajith Abraham, Sujata Dash, …
Paperback
R3,925
Discovery Miles 39 250
Diagnostic Biomedical Signal and Image…
Kemal Polat, Saban Ozturk
Paperback
R2,952
Discovery Miles 29 520
AI, IoT, and Blockchain Breakthroughs in…
Kavita Saini, N.S. Gowri Ganesh, …
Hardcover
R5,937
Discovery Miles 59 370
Technology, Users and Uses - Ethics and…
Joan Casas-Roma
Hardcover
Artificial Intelligence and Machine…
Vedik Basetti, Chandan Kumar Shiva, …
Paperback
R2,479
Discovery Miles 24 790
Intelligent Edge Computing for Cyber…
D. Jude Hemanth, Bb Gupta, …
Paperback
R2,954
Discovery Miles 29 540
|