![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > Applications of computing > Artificial intelligence > General
The volume, complexity, and irregularity of computational data in modern algorithms and simulations necessitates an unorthodox approach to computing. Understanding the facets and possibilities of soft computing algorithms is necessary for the accurate and timely processing of complex data. Research Advances in the Integration of Big Data and Smart Computing builds on the available literature in the realm of Big Data while providing further research opportunities in this dynamic field. This publication provides the resources necessary for technology developers, scientists, and policymakers to adopt and implement new paradigms in computational methods across the globe. The chapters in this publication advance the body of knowledge on soft computing techniques through topics such as transmission control protocol for mobile ad hoc networks, feature extraction, comparative analysis of filtering techniques, big data in economic policy, and advanced dimensionality reduction methods.
This research volume presents a sample of recent contributions related to the issue of quality-assessment for Web Based information in the context of information access, retrieval, and filtering systems. The advent of the Web and the uncontrolled process of documents' generation have raised the problem of declining quality assessment to information on the Web, by considering both the nature of documents (texts, images, video, sounds, and so on), the genre of documents ( news, geographic information, ontologies, medical records, products records, and so on), the reputation of information sources and sites, and, last but not least the actions performed on documents (content indexing, retrieval and ranking, collaborative filtering, and so on). The volume constitutes a compendium of both heterogeneous approaches and sample applications focusing specific aspects of the quality assessment for Web-based information for researchers, PhD students and practitioners carrying out their research activity in the field of Web information retrieval and filtering, Web information mining, information quality representation and management.
This volume introduces new approaches in intelligent control area from both the viewpoints of theory and application. It consists of eleven contributions by prominent authors from all over the world and an introductory chapter. This volume is strongly connected to another volume entitled "New Approaches in Intelligent Image Analysis" (Eds. Roumen Kountchev and Kazumi Nakamatsu). The chapters of this volume are self-contained and include summary, conclusion and future works. Some of the chapters introduce specific case studies of various intelligent control systems and others focus on intelligent theory based control techniques with applications. A remarkable specificity of this volume is that three chapters are dealing with intelligent control based on paraconsistent logics.
This book presents modeling methods and algorithms for data-driven prediction and forecasting of practical industrial process by employing machine learning and statistics methodologies. Related case studies, especially on energy systems in the steel industry are also addressed and analyzed. The case studies in this volume are entirely rooted in both classical data-driven prediction problems and industrial practice requirements. Detailed figures and tables demonstrate the effectiveness and generalization of the methods addressed, and the classifications of the addressed prediction problems come from practical industrial demands, rather than from academic categories. As such, readers will learn the corresponding approaches for resolving their industrial technical problems. Although the contents of this book and its case studies come from the steel industry, these techniques can be also used for other process industries. This book appeals to students, researchers, and professionals within the machine learning and data analysis and mining communities.
The success of a BCI system depends as much on the system itself as on the user's ability to produce distinctive EEG activity. BCI systems can be divided into two groups according to the placement of the electrodes used to detect and measure neurons firing in the brain. These groups are: invasive systems, electrodes are inserted directly into the cortex are used for single cell or multi unit recording, and electrocorticography (EcoG), electrodes are placed on the surface of the cortex (or dura); noninvasive systems, they are placed on the scalp and use electroencephalography (EEG) or magnetoencephalography (MEG) to detect neuron activity. The book is basically divided into three parts. The first part of the book covers the basic concepts and overviews of Brain Computer Interface. The second part describes new theoretical developments of BCI systems. The third part covers views on real applications of BCI systems.
This book gathers contributions on fuzzy neural control, intelligent and non-linear control, dynamic systems and cyber-physical systems. It presents the latest theoretical and practical results, including numerous applications of computational intelligence in various disciplines such as engineering, medicine, technology and the environment. The book is dedicated to Imre J. Rudas on his seventieth birthday.
Computational and mathematical models provide us with the opportunities to investigate the complexities of real world problems. They allow us to apply our best analytical methods to define problems in a clearly mathematical manner and exhaustively test our solutions before committing expensive resources. This is made possible by assuming parameter(s) in a bounded environment, allowing for controllable experimentation, not always possible in live scenarios. For example, simulation of computational models allows the testing of theories in a manner that is both fundamentally deductive and experimental in nature. The main ingredients for such research ideas come from multiple disciplines and the importance of interdisciplinary research is well recognized by the scientific community. This book provides a window to the novel endeavours of the research communities to present their works by highlighting the value of computational modelling as a research tool when investigating complex systems. We hope that the readers will have stimulating experiences to pursue research in these directions.
The recommendation of products, content and services cannot be considered newly born, although its widespread application is still in full swing. While its growing success in numerous sectors, the progress of the Social Web has revolutionized the architecture of participation and relationship in the Web, making it necessary to restate recommendation and reconciling it with "Collaborative Tagging," as the popularization of authoring in the Web, and "Social Networking," as the translation of personal relationships to the Web. Precisely, the convergence of recommendation with the above "Social Web" pillars is what motivates this book, which has collected contributions from well-known experts in the academy and the industry to provide a broader view of the problems that "Social Recommenders" might face with. If recommender systems have proven their key role in facilitating the user access to resources on the Web, when sharing resources has become social, it is natural for recommendation strategies in the Social Web era take into account the users' point of view and the relationships among users to calculate their predictions. This book aims to help readers to discover and understand the interplay among legal issues such as privacy; technical aspects such as interoperability and scalability; and social aspects such as the influence of affinity, trust, reputation and likeness, when the goal is to offer recommendations that are truly useful to both the user and the provider."
This book is dedicated to the memory of Professor Zdzis{\l}aw Pawlak who passed away almost six year ago. He is the founder of the Polish school of Artificial Intelligence and one of the pioneers in Computer Engineering and Computer Science with worldwide influence. He was a truly great scientist, researcher, teacher and a human being. This book prepared in two volumes contains more than 50 chapters. This demonstrates that the scientific approaches discovered by of Professor Zdzis{\l}aw Pawlak, especially the rough set approach as a tool for dealing with imperfect knowledge, are vivid and intensively explored by many researchers in many places throughout the world. The submitted papers prove that interest in rough set research is growing and is possible to see many new excellent results both on theoretical foundations and applications of rough sets alone or in combination with other approaches. We are proud to offer the readers this book.
This monograph deals with various visibility-based path and motion planning problems motivated by real-world applications such as exploration and mapping planetary surfaces, environmental surveillance using stationary or mobile robots, and imaging of global air/pollutant circulation. The formulation and solution of these problems call for concepts and methods from many areas of applied mathematics including computational geometry, set-covering, non-smooth optimization, combinatorial optimization and optimal control. Emphasis is placed on the formulation of new problems and methods of approach to these problems. Since geometry and visualization play important roles in the understanding of these problems, intuitive interpretations of the basic concepts are presented before detailed mathematical development. The development of a particular topic begins with simple cases illustrated by specific examples, and then progresses forward to more complex cases. The intended readers of this monograph are primarily students and researchers in engineering, computer science and applied mathematics. An understanding of the mathematical development of the main results requires only basic knowledge of mathematical analysis, control, and optimization theories. Some exercises with various degrees of difficulty are provided at the end of the main chapters. The material presented here may serve as a portion of an introductory course or seminar on visibility-based optimal path and motion planning problems with the objective of stimulating interest and further studies in this relatively new area.
This edited book presents the scientific outcomes of the 17th International Conference on Software Engineering, Artificial Intelligence Research, Management and Applications (SERA 2019) held on May 29-31, 2019 in Honolulu, Hawaii. The aim of the conference was to bring together researchers and scientists, businessmen and entrepreneurs, teachers, engineers, computer users and students to discuss the numerous fields of computer science and to share their experiences and exchange new ideas and information in a meaningful way. This book includes 13 of the conference's most promising papers featuring recent research in software engineering, management and applications
The amount of data used in the business world has been growing at a rapid and exponential rate. These large volumes of data have led not only to the rise of big data analytics, but to the need for improvements and advancements in the management of it. Recent Advances in Intelligent Technologies and Information Systems brings together current practices and innovations in the management and processing of diverse big data sets through technological integration. Focusing on concepts such as semantic technologies, open source tools, and soft computing, this book is an integral reference source for professionals, researchers, and practitioners interested in the application of technological advancements.
This book develops a coherent and quite general theoretical approach to algorithm design for iterative learning control based on the use of operator representations and quadratic optimization concepts including the related ideas of inverse model control and gradient-based design. Using detailed examples taken from linear, discrete and continuous-time systems, the author gives the reader access to theories based on either signal or parameter optimization. Although the two approaches are shown to be related in a formal mathematical sense, the text presents them separately as their relevant algorithm design issues are distinct and give rise to different performance capabilities. Together with algorithm design, the text demonstrates the underlying robustness of the paradigm and also includes new control laws that are capable of incorporating input and output constraints, enable the algorithm to reconfigure systematically in order to meet the requirements of different reference and auxiliary signals and also to support new properties such as spectral annihilation. Iterative Learning Control will interest academics and graduate students working in control who will find it a useful reference to the current status of a powerful and increasingly popular method of control. The depth of background theory and links to practical systems will be of use to engineers responsible for precision repetitive processes.
Autonomic computing and networking (ACN), a concept inspired by the human autonomic system, is a priority research area and a booming new paradigm in the field. Formal and Practical Aspects of Autonomic Computing and Networking: Specification, Development, and Verification outlines the characteristics, novel approaches of specification, refinement, programming and verification associated with ACN. The goal of ACN and the topics covered in this work include making networks and computers more self-organized, self- configured, self-healing, self-optimizing, self-protecting, and more. This book helpfully details the steps necessary towards realizing computer and network autonomy and its implications.
In the mid 1990s, Tim Berners-Lee had the idea of developing the World Wide Web into a "Semantic Web", a web of information that could be interpreted by machines in order to allow the automatic exploitation of data, which until then had to be done by humans manually. One of the first people to research topics related to the Semantic Web was Professor Rudi Studer. From the beginning, Rudi drove projects like ONTOBROKER and On-to-Knowledge, which later resulted in W3C standards such as RDF and OWL. By the late 1990s, Rudi had established a research group at the University of Karlsruhe, which later became the nucleus and breeding ground for Semantic Web research, and many of today's well-known research groups were either founded by his disciples or benefited from close cooperation with this think tank. In this book, published in celebration of Rudi's 60th birthday, many of his colleagues look back on the main research results achieved during the last 20 years. Under the editorship of Dieter Fensel, once one of Rudi's early PhD students, an impressive list of contributors and contributions has been collected, covering areas like Knowledge Management, Ontology Engineering, Service Management, and Semantic Search. Overall, this book provides an excellent overview of the state of the art in Semantic Web research, by combining historical roots with the latest results, which may finally make the dream of a "Web of knowledge, software and services" come true.
Recent advancements in the field of telecommunications, medical imaging and signal processing deal with signals that are inherently time varying, nonlinear and complex-valued. The time varying, nonlinear characteristics of these signals can be effectively analyzed using artificial neural networks. Furthermore, to efficiently preserve the physical characteristics of these complex-valued signals, it is important to develop complex-valued neural networks and derive their learning algorithms to represent these signals at every step of the learning process. This monograph comprises a collection of new supervised learning algorithms along with novel architectures for complex-valued neural networks. The concepts of meta-cognition equipped with a self-regulated learning have been known to be the best human learning strategy. In this monograph, the principles of meta-cognition have been introduced for complex-valued neural networks in both the batch and sequential learning modes. For applications where the computation time of the training process is critical, a fast learning complex-valued neural network called as a fully complex-valued relaxation network along with its learning algorithm has been presented. The presence of orthogonal decision boundaries helps complex-valued neural networks to outperform real-valued networks in performing classification tasks. This aspect has been highlighted. The performances of various complex-valued neural networks are evaluated on a set of benchmark and real-world function approximation and real-valued classification problems.
This book describes five qualitative investment decision-making methods based on the hesitant fuzzy information. They are: (1) the investment decision-making method based on the asymmetric hesitant fuzzy sigmoid preference relations, (2) the investment decision-making method based on the hesitant fuzzy trade-off and portfolio selection, (3) the investment decision-making method based on the hesitant fuzzy preference envelopment analysis, (4) the investment decision-making method based on the hesitant fuzzy peer-evaluation and strategy fusion, and (5) the investment decision-making method based on the EHVaR measurement and tail analysis.
This volume contains a contemporary, integrated description of the processes of language. These range from fast scales (fractions of a second) to slow ones (over a million years). The contributors, all experts in their fields, address language in the brain, production of sentences and dialogues, language learning, transmission and evolutionary processes that happen over centuries or millenia, the relation between language and genes, the origins of language, self-organization, and language competition and death. The book as a whole will help to show how processes at different scales affect each other, thus presenting language as a dynamic, complex and profoundly human phenomenon.
Context-aware ranking is an important task with many applications. E.g. in recommender systems items (products, movies, ...) and for search engines webpages should be ranked. In all these applications, the ranking is not global (i.e. always the same) but depends on the context. Simple examples for context are the user for recommender systems and the query for search engines. More complicated context includes time, last actions, etc. The major problem is that typically the variable domains (e.g. customers, products) are categorical and huge, the observations are very sparse and only positive events are observed. In this book, a generic method for context-aware ranking as well as its application are presented. For modelling a new factorization based on pairwise interactions is proposed and compared to other tensor factorization approaches. For learning, the `Bayesian Context-aware Ranking' framework consisting of an optimization criterion and algorithm is developed. The second main part of the book applies this general theory to the three scenarios of item, tag and sequential-set recommendation. Furthermore extensions of time-variant factors and one-class problems are studied. This book generalizes and builds on work that has received the `WWW 2010 Best Paper Award', the `WSDM 2010 Best Student Paper Award' and the `ECML/PKDD 2009 Best Discovery Challenge Award'.
In Artificial Intelligence in Finance and Investing, authors Robert Trippi and Jae Lee explain this fascinating new technology in terms that portfolio managers, institutional investors, investment analysis, and information systems professionals can understand. Using real-life examples and a practical approach, this rare and readable volume discusses the entire field of artificial intelligence of relevance to investing, so that readers can realize the benefits and evaluate the features of existing or proposed systems, and ultimately construct their own systems. Topics include using Expert Systems for Asset Allocation, Timing Decisions, Pattern Recognition, and Risk Assessment; overview of Popular Knowledge-Based Systems; construction of Synergistic Rule Bases for Securities Selection; incorporating the Markowitz Portfolio Optimization Model into Knowledge-Based Systems; Bayesian Theory and Fuzzy Logic System Components; Machine Learning in Portfolio Selection and Investment Timing, including Pattern-Based Learning and Fenetic Algorithms; and Neural Network-Based Systems. To illustrate the concepts presented in the book, the authors conclude with a valuable practice session and analysis of a typical knowledge-based system for investment management, K-FOLIO. For those who want to stay on the cutting edge of the "application" revolution, Artificial Intelligence in Finance and Investing offers a pragmatic introduction to the use of knowledge-based systems in securities selection and portfolio management.
There isn't a facet of human life that has not been touched and influenced by robots and automation. What makes robots and machines versatile is their computational intelligence. While modern intelligent sensors and powerful hardware capabilities have given a huge fillip to the growth of intelligent machines, the progress in the development of algorithms for smart interaction, collaboration and pro-activeness will result in the next quantum jump. This book deals with the recent advancements in design methodologies, algorithms and implementation techniques to incorporate intelligence in "robots and automation systems." Several articles deal with navigation, localization and mapping of mobile robots, a problem that engineers and researchers are grappling with all the time. Fuzzy logic, neural networks and neuro-fuzzy based techniques for real world applications have been detailed in a few articles. This edited volume is targeted to present the latest state-of-the-art computational intelligence techniques in Robotics and Automation. It is a compilation of the extended versions of the very best papers selected from the many that were presented at the 5th International Conference on Automation, Robotics and Applications (ICARA 2011) which was held in Wellington, New Zealand from 6-8 December, 2011. Scientists and engineers who work with robots and automation systems will find this book very useful and stimulating.
This monograph comprises work on network-based Intrusion Detection (ID) that is grounded in visualisation and hybrid Artificial Intelligence (AI). It has led to the design of MOVICAB-IDS (MObile VIsualisation Connectionist Agent-Based IDS), a novel Intrusion Detection System (IDS), which is comprehensively described in this book. This novel IDS combines different AI paradigms to visualise network traffic for ID at packet level. It is based on a dynamic Multiagent System (MAS), which integrates an unsupervised neural projection model and the Case-Based Reasoning (CBR) paradigm through the use of deliberative agents that are capable of learning and evolving with the environment. The proposed novel hybrid IDS provides security personnel with a synthetic, intuitive snapshot of network traffic and protocol interactions. This visualisation interface supports the straightforward detection of anomalous situations and their subsequent identification. The performance of MOVICAB-IDS was tested through a novel mutation-based testing method in different real domains which entailed several attacks and anomalous situations.
This book contains the combined proceedings of the 4th International Conference on Ubiquitous Computing Application and Wireless Sensor Network (UCAWSN-15) and the 16th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT-15). The combined proceedings present peer-reviewed contributions from academic and industrial researchers in fields including ubiquitous and context-aware computing, context-awareness reasoning and representation, location awareness services, and architectures, protocols and algorithms, energy, management and control of wireless sensor networks. The book includes the latest research results, practical developments and applications in parallel/distributed architectures, wireless networks and mobile computing, formal methods and programming languages, network routing and communication algorithms, database applications and data mining, access control and authorization and privacy preserving computation.
This book examines modern artificial intelligence to display how it may be applied to computer games. It spans the divide that exists between the academic research community working with advanced artificial intelligence and the games programming community which must create and release new and interesting games.
|
You may like...
Cold - Extreme Adventures at the Lowest…
Ranulph Fiennes
Paperback
(1)
Energetic Particles in the Heliosphere
George M. Simnett
Hardcover
|