![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > Applications of computing > Artificial intelligence > General
This book presents recently developed intelligent techniques with applications and theory in the area of quality management. The involved applications of intelligence include techniques such as fuzzy sets, neural networks, genetic algorithms, etc. The book consists of classical quality management topics dealing with intelligent techniques for solving the complex quality management problems. The book will serve as an excellent reference for quality managers, researchers, lecturers and postgraduate students in this area. The authors of the chapters are well-known researchers in the area of quality management.
This book-presents new methods and tools for the integration and simulation of smart devices. The design approach described in this book explicitly accounts for integration of Smart Systems components and subsystems as a specific constraint. It includes methodologies and EDA tools to enable multi-disciplinary and multi-scale modeling and design, simulation of multi-domain systems, subsystems and components at all levels of abstraction, system integration and exploration for optimization of functional and non-functional metrics. By covering theoretical and practical aspects of smart device design, this book targets people who are working and studying on hardware/software modelling, component integration and simulation under different positions (system integrators, designers, developers, researchers, teachers, students etc.). In particular, it is a good introduction to people who have interest in managing heterogeneous components in an efficient and effective way on different domains and different abstraction levels. People active in smart device development can understand both the current status of practice and future research directions. * Provides a comprehensive overview of smart systems design, focusing on design challenges and cutting-edge solutions; * Enables development of a co-simulation and co-design environment that accounts for the peculiarities of the basic subsystems and components to be integrated; * Describes development of modeling and design techniques, methods and tools that enable multi-domain simulation and optimization at various levels of abstraction and across different technological domains.
This book begins by briefly explaining learning automata (LA) models and a recently developed cellular learning automaton (CLA) named wavefront CLA. Analyzing social networks is increasingly important, so as to identify behavioral patterns in interactions among individuals and in the networks' evolution, and to develop the algorithms required for meaningful analysis. As an emerging artificial intelligence research area, learning automata (LA) has already had a significant impact in many areas of social networks. Here, the research areas related to learning and social networks are addressed from bibliometric and network analysis perspectives. In turn, the second part of the book highlights a range of LA-based applications addressing social network problems, from network sampling, community detection, link prediction, and trust management, to recommender systems and finally influence maximization. Given its scope, the book offers a valuable guide for all researchers whose work involves reinforcement learning, social networks and/or artificial intelligence.
This book presents the latest findings on the subject of combustion optimization based on computational intelligence. It covers a broad range of topics, including the modeling of coal combustion characteristics based on artificial neural networks and support vector machines. It also describes the optimization of combustion parameters using genetic algorithms or ant colony algorithms, an online coal optimization system, etc. Accordingly, the book offers a unique guide for researchers in the areas of combustion optimization, NOx emission control, energy and power engineering, and chemical engineering.
The work presented in this book is a combination of theoretical advancements of big data analysis, cloud computing, and their potential applications in scientific computing. The theoretical advancements are supported with illustrative examples and its applications in handling real life problems. The applications are mostly undertaken from real life situations. The book discusses major issues pertaining to big data analysis using computational intelligence techniques and some issues of cloud computing. An elaborate bibliography is provided at the end of each chapter. The material in this book includes concepts, figures, graphs, and tables to guide researchers in the area of big data analysis and cloud computing.
This book develops a set of reference methods capable of modeling uncertainties existing in membership functions, and analyzing and synthesizing the interval type-2 fuzzy systems with desired performances. It also provides numerous simulation results for various examples, which fill certain gaps in this area of research and may serve as benchmark solutions for the readers. Interval type-2 T-S fuzzy models provide a convenient and flexible method for analysis and synthesis of complex nonlinear systems with uncertainties.
This book covers aspects of human re-identification problems related to computer vision and machine learning. Working from a practical perspective, it introduces novel algorithms and designs for human re-identification that bridge the gap between research and reality. The primary focus is on building a robust, reliable, distributed and scalable smart surveillance system that can be deployed in real-world scenarios. This book also includes detailed discussions on pedestrian candidates detection, discriminative feature extraction and selection, dimension reduction, distance/metric learning, and decision/ranking enhancement.This book is intended for professionals and researchers working in computer vision and machine learning. Advanced-level students of computer science will also find the content valuable.
This book offers a timely overview of theories and methods developed by an authoritative group of researchers to understand the link between criticality and brain functioning. Cortical information processing in particular and brain function in general rely heavily on the collective dynamics of neurons and networks distributed over many brain areas. A key concept for characterizing and understanding brain dynamics is the idea that networks operate near a critical state, which offers several potential benefits for computation and information processing. However, there is still a large gap between research on criticality and understanding brain function. For example, cortical networks are not homogeneous but highly structured, they are not in a state of spontaneous activation but strongly driven by changing external stimuli, and they process information with respect to behavioral goals. So far the questions relating to how critical dynamics may support computation in this complex setting, and whether they can outperform other information processing schemes remain open. Based on the workshop "Dynamical Network States, Criticality and Cortical Function", held in March 2017 at the Hanse Institute for Advanced Studies (HWK) in Delmenhorst, Germany, the book provides readers with extensive information on these topics, as well as tools and ideas to answer the above-mentioned questions. It is meant for physicists, computational and systems neuroscientists, and biologists.
This edited volume on computational intelligence algorithms-based applications includes work presented at the International Conference on Computational Intelligence, Communications, and Business Analytics (CICBA 2017). It provides the latest research findings on the significance of computational intelligence and related application areas. It also introduces various computation platforms involving evolutionary algorithms, fuzzy logic, swarm intelligence, artificial neural networks and several other tools for solving real-world problems. It also discusses various tools that are hybrids of more than one solution framework, highlighting the theoretical aspects as well as various real-world applications.
This book presents an Introduction and 11 independent chapters, which are devoted to various new approaches of intelligent image processing and analysis. The book also presents new methods, algorithms and applied systems for intelligent image processing, on the following basic topics: Methods for Hierarchical Image Decomposition; Intelligent Digital Signal Processing and Feature Extraction; Data Clustering and Visualization via Echo State Networks; Clustering of Natural Images in Automatic Image Annotation Systems; Control System for Remote Sensing Image Processing; Tissue Segmentation of MR Brain Images Sequence; Kidney Cysts Segmentation in CT Images; Audio Visual Attention Models in Mobile Robots Navigation; Local Adaptive Image Processing; Learning Techniques for Intelligent Access Control; Resolution Improvement in Acoustic Maps. Each chapter is self-contained with its own references. Some of the chapters are devoted to the theoretical aspects while the others are presenting the practical aspects and the analysis of the modeling of the developed algorithms in different application areas.
This book proposes new algorithms to ensure secured communications and prevent unauthorized data exchange in secured multimedia systems. Focusing on numerous applications' algorithms and scenarios, it offers an in-depth analysis of data hiding technologies including watermarking, cryptography, encryption, copy control, and authentication. The authors present a framework for visual data hiding technologies that resolves emerging problems of modern multimedia applications in several contexts including the medical, healthcare, education, and wireless communication networking domains. Further, it introduces several intelligent security techniques with real-time implementation. As part of its comprehensive coverage, the book discusses contemporary multimedia authentication and fingerprinting techniques, while also proposing personal authentication/recognition systems based on hand images, surveillance system security using gait recognition, face recognition under restricted constraints such as dry/wet face conditions, and three-dimensional face identification using the approach developed here. This book equips perception technology professionals with the latest technologies, techniques, and strategies for multimedia security systems, offering a valuable resource for engineers and researchers working to develop security systems.
Chapters "Turing and Free Will: A New Take on an Old Debate" and "Turing and the History of Computer Music" are available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
This book presents the state of the art in designing high-performance algorithms that combine simulation and optimization in order to solve complex optimization problems in science and industry, problems that involve time-consuming simulations and expensive multi-objective function evaluations. As traditional optimization approaches are not applicable per se, combinations of computational intelligence, machine learning, and high-performance computing methods are popular solutions. But finding a suitable method is a challenging task, because numerous approaches have been proposed in this highly dynamic field of research. That's where this book comes in: It covers both theory and practice, drawing on the real-world insights gained by the contributing authors, all of whom are leading researchers. Given its scope, if offers a comprehensive reference guide for researchers, practitioners, and advanced-level students interested in using computational intelligence and machine learning to solve expensive optimization problems.
This book, written by an international team of prominent authors, gathers the latest developments in mobile technologies for the acquisition, management, analysis and sharing of Volunteered Geographic Information (VGI) in the context of Earth observation. It is divided into three parts, the first of which presents case studies on the implementation of VGI for Earth observation, discusses the characteristics of volunteers' engagement in relation with their expertise and motivation, analyzes the tasks they are called upon to perform, and examines the available tools for developing VGI. In turn, the second part introduces readers to essential methods, techniques and algorithms used to develop mobile information systems based on VGI for distinct Earth observation tasks, while the last part focuses on the drawbacks and limitations of VGI with regard to the above-mentioned tasks and proposes innovative methods and techniques to help overcome them. Given its breadth of coverage, the book offers a comprehensive, practice-oriented reference guide for researchers and practitioners in the field of geo-information management.
This book provides a comprehensive overview of computational intelligence methods for semantic knowledge management. Contrary to popular belief, the methods for semantic management of information were created several decades ago, long before the birth of the Internet. In fact, it was back in 1945 when Vannevar Bush introduced the idea for the first protohypertext: the MEMEX (MEMory + indEX) machine. In the years that followed, Bush's idea influenced the development of early hypertext systems until, in the 1980s, Tim Berners Lee developed the idea of the World Wide Web (WWW) as it is known today. From then on, there was an exponential growth in research and industrial activities related to the semantic management of the information and its exploitation in different application domains, such as healthcare, e-learning and energy management. However, semantics methods are not yet able to address some of the problems that naturally characterize knowledge management, such as the vagueness and uncertainty of information. This book reveals how computational intelligence methodologies, due to their natural inclination to deal with imprecision and partial truth, are opening new positive scenarios for designing innovative semantic knowledge management architectures.
This book compiles some of the latest research in cooperation between robots and sensor networks. Structured in twelve chapters, this book addresses fundamental, theoretical, implementation and experimentation issues. The chapters are organized into four parts namely multi-robots systems, data fusion and localization, security and dependability, and mobility.
Continuous developments in software and intelligence sciences have brought together the studies of both natural and machine intelligence and the relationship between the function of the brain and the abstract soft mind; creating a new multidisciplinary field of study. Advances in Abstract Intelligence and Soft Computing brings together the latest research in computer science: theoretical software engineering, cognitive science and informatics, and also their influence on the processes of natural and machine intelligence. This book is a collection of widespread research in the constant expansions on this emerging discipline.
Electric vehicles are changing transportation dramatically and this unique book merges the many disciplines that contribute research to make EV possible, so the reader is informed about all the underlying science and technologies driving the change. An emission-free mobility system is the only way to save the world from the greenhouse effect and other ecological issues. This belief has led to a tremendous growth in the demand for electric vehicles (EV) and hybrid electric vehicles (HEV), which are predicted to have a promising future based on the goals fixed by the European Commission's Horizon 2020 program. This book brings together the research that has been carried out in the EV/HEV sector and the leading role of advanced optimization techniques with artificial intelligence (AI). This is achieved by compiling the findings of various studies in the electrical, electronics, computer, and mechanical domains for the EV/HEV system. In addition to acting as a hub for information on these research findings, the book also addresses the challenges in the EV/HEV sector and provides proven solutions that involve the most promising AI techniques. Since the commercialization of EVs/HEVs still remains a challenge in industries in terms of performance and cost, these are the two tradeoffs which need to be researched in order to arrive at an optimal solution. Therefore, this book focuses on the convergence of various technologies involved in EVs/HEVs. Since all countries will gradually shift from conventional internal combustion (IC) engine-based vehicles to EVs/HEVs in the near future, it also serves as a useful reliable resource for multidisciplinary researchers and industry teams.
This timely text/reference presents a comprehensive review of the workflow scheduling algorithms and approaches that are rapidly becoming essential for a range of software applications, due to their ability to efficiently leverage diverse and distributed cloud resources. Particular emphasis is placed on how workflow-based automation in software-defined cloud centers and hybrid IT systems can significantly enhance resource utilization and optimize energy efficiency. Topics and features: describes dynamic workflow and task scheduling techniques that work across multiple (on-premise and off-premise) clouds; presents simulation-based case studies, and details of real-time test bed-based implementations; offers analyses and comparisons of a broad selection of static and dynamic workflow algorithms; examines the considerations for the main parameters in projects limited by budget and time constraints; covers workflow management systems, workflow modeling and simulation techniques, and machine learning approaches for predictive workflow analytics. This must-read work provides invaluable practical insights from three subject matter experts in the cloud paradigm, which will empower IT practitioners and industry professionals in their daily assignments. Researchers and students interested in next-generation software-defined cloud environments will also greatly benefit from the material in the book.
This book shows that the plasmodium of Physarum polycephalum can be considered a natural labelled transition system, and based on this, it proposes high-level programming models for controlling the plasmodium behaviour. The presented programming is a form of pure behaviourism: the authors consider the possibility of simulating all basic stimulus-reaction relations. As plasmodium is a good experimental medium for behaviouristic models, the book applies the programming tools for modelling plasmodia as unconventional computers in different behavioural sciences based on studying the stimulus-reaction relations. The authors examine these relations within the framework of a bio-inspired game theory on plasmodia they have developed i.e. within an experimental game theory, where, on the one hand, all basic definitions are verified in experiments with Physarum polycephalum and Badhamia utricularis and, on the other hand, all basic algorithms are implemented in the object-oriented language for simulations of plasmodia. The results allow the authors to propose that the plasmodium can be a model for concurrent games and context-based games.
This book introduces the challenges of robotic tactile perception and task understanding, and describes an advanced approach based on machine learning and sparse coding techniques. Further, a set of structured sparse coding models is developed to address the issues of dynamic tactile sensing. The book then proves that the proposed framework is effective in solving the problems of multi-finger tactile object recognition, multi-label tactile adjective recognition and multi-category material analysis, which are all challenging practical problems in the fields of robotics and automation. The proposed sparse coding model can be used to tackle the challenging visual-tactile fusion recognition problem, and the book develops a series of efficient optimization algorithms to implement the model. It is suitable as a reference book for graduate students with a basic knowledge of machine learning as well as professional researchers interested in robotic tactile perception and understanding, and machine learning.
This book focuses on the characteristics of cooperative control problems for general linear multi-agent systems, including formation control, air traffic control, rendezvous, foraging, role assignment, and cooperative search. On this basis and combined with linear system theory, it introduces readers to the cooperative tracking problem for identical continuous-time multi-agent systems under state-coupled dynamics; the cooperative output regulation for heterogeneous multi-agent systems; and the optimal output regulation for model-free multi-agent systems. In closing, the results are extended to multiple leaders, and cooperative containment control for uncertain multi-agent systems is addressed. Given its scope, the book offers an essential reference guide for researchers and designers of multi-agent systems, as well as a valuable resource for upper-level undergraduate and graduate students.
This is the third book presenting selected results of research on the further development of the shape understanding system (SUS) carried out by authors in the newly founded Queen Jadwiga Research Institute of Understanding. In this book the new term Machine Understanding is introduced referring to a new area of research aiming to investigate the possibility of building machines with the ability to understand. It is presented that SUS needs to some extent mimic human understanding and for this reason machines are evaluated according to the rules applied for the evaluation of human understanding. The book shows how to formulate problems and how it can be tested if the machine is able to solve these problems.
This book provides a systematic review of many advanced techniques to support the analysis of large collections of documents, ranging from the elementary to the profound, covering all the aspects of the visualization of text documents. Particularly, we start by introducing the fundamental concept of information visualization and visual analysis, followed by a brief survey of the field of text visualization and commonly used data models for converting document into a structured form for visualization. Then we introduce the key visualization techniques including visualizing document similarity, content, sentiments, as well as text corpus exploration system in details with concrete examples in the rest of the book.
This book provides an emerging computational intelligence tool in the framework of collective intelligence for modeling and controlling distributed multi-agent systems referred to as Probability Collectives. In the modified Probability Collectives methodology a number of constraint handling techniques are incorporated, which also reduces the computational complexity and improved the convergence and efficiency. Numerous examples and real world problems are used for illustration, which may also allow the reader to gain further insight into the associated concepts. |
You may like...
Diagnostic Biomedical Signal and Image…
Kemal Polat, Saban Ozturk
Paperback
R2,952
Discovery Miles 29 520
Artificial Intelligence for Neurological…
Ajith Abraham, Sujata Dash, …
Paperback
R3,925
Discovery Miles 39 250
Artificial Intelligence and Machine…
Vedik Basetti, Chandan Kumar Shiva, …
Paperback
R2,479
Discovery Miles 24 790
AI, IoT, and Blockchain Breakthroughs in…
Kavita Saini, N.S. Gowri Ganesh, …
Hardcover
R5,937
Discovery Miles 59 370
Principles and Methods of Explainable…
Victor Hugo C. de Albuquerque, P Naga Srinivasu, …
Hardcover
R10,591
Discovery Miles 105 910
|