Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Computing & IT > Applications of computing > Artificial intelligence > General
Multi-Agent Systems for Education and Interactive Entertainment: Design, Use and Experience presents readers with a rich collection of ideas from researchers who are exploring the complex tradeoffs that must be made in designing agent systems for education and interactive entertainment. This book aims to provide a mixture of relevant theoretical and practical understanding of the use of multi-agent systems in educational and entertainment research, together with practical examples of the use of such systems in real application scenarios.
This book is a collection of high-quality research work on cutting-edge technologies and the most-happening areas of computational intelligence and data engineering. It includes selected papers from the International Conference on Computational Intelligence and Data Engineering (ICCIDE 2020). It covers various topics, including collective intelligence, intelligent transportation systems, fuzzy systems, Bayesian network, ant colony optimization, data privacy and security, data mining, data warehousing, big data analytics, cloud computing, natural language processing, swarm intelligence and speech processing.
This book presents a collection of mathematical models that deals with the real scenario in the industries. The primary objective of this book is to explore various effective methods for inventory control and management using soft computing techniques. Inventory control and management is a very tedious task faced by all the organizations in any sector of the economy. It makes decisions for policies, activities, and procedures in order to make sure that the right amount of each item is held in stock at any time. Many industries suffer from indiscipline while ordering and production mismatch. It is essential to provide best ordering policy to control such kind of mismatch in the industries. All the mathematical model solutions are provided with the help of various soft computing optimization techniques to determine optimal ordering policy. This book is beneficial for practitioners, educators, and researchers. It is also helpful for retailers/managers for improving business functions and making more accurate and realistic decisions.
Medical internet of things (IoT)-based applications are being utilized in several industries and have been shown to provide significant advantages to users in critical health applications. Artificial intelligence (AI) plays a key role in the growth and success of medical IoT applications and IoT devices in the medical sector. To enhance revenue, improve competitive advantage, and increase consumer engagement, the use of AI with medical IoT should be encouraged in the healthcare and medical arena. Revolutionizing Healthcare Through Artificial Intelligence and Internet of Things Applications provides greater knowledge of how AI affects healthcare and medical efficacy in order to improve outputs. It focuses on a thorough and comprehensive introduction to machine learning. Covering topics such as patient treatment, cyber-physical systems, and telemedicine, this premier reference source is a dynamic resource for hospital administrators, medical professionals, government officials, students and faculty of higher education, librarians, researchers, and academicians.
This book presents a variety of perspectives on vision-based applications. These contributions are focused on optoelectronic sensors, 3D & 2D machine vision technologies, robot navigation, control schemes, motion controllers, intelligent algorithms and vision systems. The authors focus on applications of unmanned aerial vehicles, autonomous and mobile robots, industrial inspection applications and structural health monitoring. Recent advanced research in measurement and others areas where 3D & 2D machine vision and machine control play an important role, as well as surveys and reviews about vision-based applications. These topics are of interest to readers from diverse areas, including electrical, electronics and computer engineering, technologists, students and non-specialist readers. * Presents current research in image and signal sensors, methods, and 3D & 2D technologies in vision-based theories and applications; * Discusses applications such as daily use devices including robotics, detection, tracking and stereoscopic vision systems, pose estimation, avoidance of objects, control and data exchange for navigation, and aerial imagery processing; * Includes research contributions in scientific, industrial, and civil applications.
This is the fourth volume of the successful series Robot Operating Systems: The Complete Reference, providing a comprehensive overview of robot operating systems (ROS), which is currently the main development framework for robotics applications, as well as the latest trends and contributed systems. The book is divided into four parts: Part 1 features two papers on navigation, discussing SLAM and path planning. Part 2 focuses on the integration of ROS into quadcopters and their control. Part 3 then discusses two emerging applications for robotics: cloud robotics, and video stabilization. Part 4 presents tools developed for ROS; the first is a practical alternative to the roslaunch system, and the second is related to penetration testing. This book is a valuable resource for ROS users and wanting to learn more about ROS capabilities and features.
The discovery and development of new computational methods have expanded the capabilities and uses of simulations. With agent-based models, the applications of computer simulations are significantly enhanced. Multi-Agent-Based Simulations Applied to Biological and Environmental Systems is a pivotal reference source for the latest research on the implementation of autonomous agents in computer simulation paradigms. Featuring extensive coverage on relevant applications, such as biodiversity conservation, pollution reduction, and environmental risk assessment, this publication is an ideal source for researchers, academics, engineers, practitioners, and professionals seeking material on various issues surrounding the use of agent-based simulations.
In this book, differential evolution and its modified variants are applied to the clustering of data and images. Metaheuristics have emerged as potential algorithms for dealing with complex optimization problems, which are otherwise difficult to solve using traditional methods. In this regard, differential evolution is considered to be a highly promising technique for optimization and is being used to solve various real-time problems. The book studies the algorithms in detail, tests them on a range of test images, and carefully analyzes their performance. Accordingly, it offers a valuable reference guide for all researchers, students and practitioners working in the fields of artificial intelligence, optimization and data analytics.
This book shows how a conventional multi-layered approach can be used to control a snake robot on a desired path while moving on a flat surface. To achieve robustness to unknown variations in surface conditions, it explores various adaptive robust control methods. The authors propose a sliding-mode control approach designed to achieve robust maneuvering for bounded uncertainty with a known upper bound. The control is modified by addition of an adaptation law to alleviate the overestimation problem of the switching gain as well as to circumvent the requirement for knowledge regarding the bounds of uncertainty. The book works toward non-conservativeness, achieving efficient tracking in the presence of slowly varying uncertainties with a specially designed framework for time-delayed control. It shows readers how to extract superior performance from their snake robots with an approach that allows robustness toward bounded time-delayed estimation errors. The book also demonstrates how the multi-layered control framework can be simplified by employing differential flatness for such a system. Finally, the mathematical model of a snake robot moving inside a uniform channel using only side-wall contact is discussed. The model has further been employed to demonstrate adaptive robust control design for such a motion. Using numerous illustrations and tables, Adaptive Robust Control for Planar Snake Robots will interest researchers, practicing engineers and postgraduate students working in the field of robotics and control systems.
This book explores a range of important theoretical and practical issues in the field of computational network application tools, while also presenting the latest advances and innovations using intelligent technology approaches. The main focus is on detecting and diagnosing complex application performance problems so that an optimal and expected level of system service can be attained and maintained. The book discusses challenging issues like enhancing system efficiency, performance, and assurance management, and blends the concept of system modeling and optimization techniques with soft computing, neural network, and sensor network approaches. In addition, it presents certain metrics and measurements that can be translated into business value. These metrics and measurements can also help to establish an empirical performance baseline for various applications, which can be used to identify changes in system performance. By presenting various intelligent technologies, the book provides readers with compact but insightful information on several broad and rapidly growing areas in the computation network application domain. The book's twenty-two chapters examine and address current and future research topics in areas like neural networks, soft computing, nature-inspired computing, fuzzy logic and evolutionary computation, machine learning, smart security, and wireless networking, and cover a wide range of applications from pattern recognition and system modeling, to intelligent control problems and biomedical applications. The book was written to serve a broad readership, including engineers, computer scientists, management professionals, and mathematicians interested in studying tools and techniques for computational intelligence and applications for performance analysis. Featuring theoretical concepts and best practices in computational network applications, it will also be helpful for researchers, graduate and undergraduate students with an interest in the fields of soft computing, neural networks, machine learning, sensor networks, smart security, etc.
Computational intelligence is rapidly becoming an essential part of reliability engineering. This book offers a wide spectrum of viewpoints on the merger of technologies. Leading scientists share their insights and progress on reliability engineering techniques, suitable mathematical methods, and practical applications. Thought-provoking ideas are embedded in a solid scientific basis that contribute to the development the emerging field. This book is for anyone working on the most fundamental paradigm-shift in resilience engineering in decades. Scientists benefit from this book by gaining insight in the latest in the merger of reliability engineering and computational intelligence. Businesses and (IT) suppliers can find inspiration for the future, and reliability engineers can use the book to move closer to the cutting edge of technology.
This research monograph brings AI to the field of Customer Relationship Management (CRM) to make a customer experience with a product or service smart and enjoyable. AI is here to help customers to get a refund for a canceled flight, unfreeze a banking account or get a health test result. Today, CRM has evolved from storing and analyzing customers' data to predicting and understanding their behavior by putting a CRM system in a customers' shoes. Hence advanced reasoning with learning from small data, about customers' attitudes, introspection, reading between the lines of customer communication and explainability need to come into play. Artificial Intelligence for Customer Relationship Management leverages a number of Natural Language Processing (NLP), Machine Learning (ML), simulation and reasoning techniques to enable CRM with intelligence. An effective and robust CRM needs to be able to chat with customers, providing desired information, completing their transactions and resolving their problems. It introduces a systematic means of ascertaining a customers' frame of mind, their intents and attitudes to determine when to provide a thorough answer, a recommendation, an explanation, a proper argument, timely advice and promotion or compensation. The author employs a spectrum of ML methods, from deterministic to statistical to deep, to predict customer behavior and anticipate possible complaints, assuring customer retention efficiently. Providing a forum for the exchange of ideas in AI, this book provides a concise yet comprehensive coverage of methodologies, tools, issues, applications, and future trends for professionals, managers, and researchers in the CRM field together with AI and IT professionals.
This is the first of two volumes that together provide an overview of the latest advances in the generation and application of digital twins in bioprocess design and optimization.Both processes have undergone significant changes over the past few decades, moving from data-driven approaches into the 21st-century digitalization of the bioprocess industry. Moreover, the high demand for biotechnological products calls for efficient methods during research and development, as well as during tech transfer and routine manufacturing. In this regard, one promising tool is the use of digital twins, which offer a virtual representation of the bioprocess. They reflect the mechanistics of the biological system and the interactions between process parameters, key performance indicators and product quality attributes in the form of a mathematical process model. Furthermore, digital twins allow us to use computer-aided methods to gain an improved process understanding, to test and plan novel bioprocesses, and to efficiently monitor them. This book explains the mathematical structure of digital twins, their development and the model's respective parts, as well as concepts for the knowledge-driven generation and structural variability of digital twins. Covering fundamentals as well as applications, the two volumes offer the ideal introduction to the topic for researchers in academy and industry alike.
This book discusses methods and algorithms for the near-optimal adaptive control of nonlinear systems, including the corresponding theoretical analysis and simulative examples, and presents two innovative methods for the redundancy resolution of redundant manipulators with consideration of parameter uncertainty and periodic disturbances. It also reports on a series of systematic investigations on a near-optimal adaptive control method based on the Taylor expansion, neural networks, estimator design approaches, and the idea of sliding mode control, focusing on the tracking control problem of nonlinear systems under different scenarios. The book culminates with a presentation of two new redundancy resolution methods; one addresses adaptive kinematic control of redundant manipulators, and the other centers on the effect of periodic input disturbance on redundancy resolution. Each self-contained chapter is clearly written, making the book accessible to graduate students as well as academic and industrial researchers in the fields of adaptive and optimal control, robotics, and dynamic neural networks.
As global communities are attempting to transform into more efficient and technologically-advanced metropolises, artificial intelligence (AI) has taken a firm grasp on various professional fields. Technology used in these industries is transforming by introducing intelligent techniques including machine learning, cognitive computing, and computer vision. This has raised significant attention among researchers and practitioners on the specific impact that these smart technologies have and what challenges remain. Applications of Artificial Intelligence for Smart Technology is a pivotal reference source that provides vital research on the implementation of advanced technological techniques in professional industries through the use of AI. While highlighting topics such as pattern recognition, computational imaging, and machine learning, this publication explores challenges that various fields currently face when applying these technologies and examines the future uses of AI. This book is ideally designed for researchers, developers, managers, academicians, analysts, students, and practitioners seeking current research on the involvement of AI in professional practices.
This book analyzes new electricity pricing models that consider uncertainties in the power market due to the changing behavior of market players and the implementation of renewable distributed generation and responsive loads. In-depth chapters examine the different types of market players including the generation, transmission, and distribution companies, virtual power plants, demand response aggregators, and energy hubs and microgrids. Expert authors propose optimal operational models for short-term performance and scheduling and present readers with solutions for pricing challenges in uncertain environments. This book is useful for engineers, researchers and students involved in integrating demand response programs into smart grids and for electricity market operation and planning. Proposes optimal operation models; Discusses the various players in today's electricity markets; Describes the effects of demand response programs in smart grids.
The future of music archiving and search engines lies in deep learning and big data. Music information retrieval algorithms automatically analyze musical features like timbre, melody, rhythm or musical form, and artificial intelligence then sorts and relates these features. At the first International Symposium on Computational Ethnomusicological Archiving held on November 9 to 11, 2017 at the Institute of Systematic Musicology in Hamburg, Germany, a new Computational Phonogram Archiving standard was discussed as an interdisciplinary approach. Ethnomusicologists, music and computer scientists, systematic musicologists as well as music archivists, composers and musicians presented tools, methods and platforms and shared fieldwork and archiving experiences in the fields of musical acoustics, informatics, music theory as well as on music storage, reproduction and metadata. The Computational Phonogram Archiving standard is also in high demand in the music market as a search engine for music consumers. This book offers a comprehensive overview of the field written by leading researchers around the globe.
The book focuses the latest endeavours relating researches and developments conducted in fields of Control, Robotics and Automation. Through more than twenty revised and extended articles, the present book aims to provide the most up-to-date state-of-art of the aforementioned fields allowing researcher, PhD students and engineers not only updating their knowledge but also benefiting from the source of inspiration that represents the set of selected articles of the book. The deliberate intention of editors to cover as well theoretical facets of those fields as their practical accomplishments and implementations offers the benefit of gathering in a same volume a factual and well-balanced prospect of nowadays research in those topics. A special attention toward "Intelligent Robots and Control" may characterize another benefit of this book.
This book constitutes the refereed post-conference proceedings of the Third IFIP TC 12 International Conference on Computational Intelligence in Data Science, ICCIDS 2020, held in Chennai, India, in February 2020.The 19 revised full papers and 8 revised short papers presented were carefully reviewed and selected from 94 submissions. The papers are organized in the following topical sections: computational intelligence for text analysis; computational intelligence for image and video analysis; and data science.
This book demonstrates an original concept for implementing the rough set theory in the construction of decision-making systems. It addresses three types of decisions, including those in which the information or input data is insufficient. Though decision-making and classification in cases with missing or inaccurate data is a common task, classical decision-making systems are not naturally adapted to it. One solution is to apply the rough set theory proposed by Prof. Pawlak. The proposed classifiers are applied and tested in two configurations: The first is an iterative mode in which a single classification system requests completion of the input data until an unequivocal decision (classification) is obtained. It allows us to start classification processes using very limited input data and supplementing it only as needed, which limits the cost of obtaining data. The second configuration is an ensemble mode in which several rough set-based classification systems achieve the unequivocal decision collectively, even though the systems cannot separately deliver such results.
This book constitutes the refereed proceedings of six International Workshops held as parallel events of the 17th IFIP WG 12.5 International Conference on Artificial Intelligence Applications and Innovations, AIAI 2021, virtually and in Hersonissos, Crete, Greece, in June 2021: the 6th Workshop on 5G-Putting Intelligence to the Network Edge, 5G-PINE 2021; Artificial Intelligence in Biomedical Engineering and Informatics Workshop, AI-BIO 2021; Workshop on Defense Applications of AI, DAAI 2021; Distributed AI for Resource-Constrained Platforms Workshop, DARE 2021; Energy Efficiency and Artificial Intelligence Workshop, EEAI 2021; and the 10th Mining Humanistic Data Workshop, MHDW 2021. The 24 full papers and 16 short papers presented at these workshops were carefully reviewed and selected from 72 submissions. The papers presented at 5G-PINE focus on the latest AI applications in the telecommunication industry and AI in modern 5G-oriented telecommunications infrastructures. The papers chosen for AI-BIO 2021 present research on the subject of AI, in its broadest sense, in biomedical engineering and health informatics. The DAAI 2021 papers aim at presenting recent evolutions in artificial intelligence applicable to defense and security applications. The papers selected for DARE 2021 address a variety of pertinent and challenging topics within the scope of distributed AI for resource-constrained platforms. The papers presented at EEAI 2021 aim to bring together interdisciplinary approaches that focus on the application of AI-driven solutions for increasing and improving energy efficiency of residential and tertiary buildings and of occupant behavior. The MHDW papers focus on topics such as recommendation systems, sentiment analysis, pattern recognition, data mining, and time series.
This Festschrift is a tribute to Susan Stepney's ideas and achievements in the areas of computer science, formal specifications and proofs, complex systems, unconventional computing, artificial chemistry, and artificial life. All chapters were written by internationally recognised leaders in computer science, physics, mathematics, and engineering. The book shares fascinating ideas, algorithms and implementations related to the formal specification of programming languages and applications, behavioural inheritance, modelling and analysis of complex systems, parallel computing and non-universality, growing cities, artificial life, evolving artificial neural networks, and unconventional computing. Accordingly, it offers an insightful and enjoyable work for readers from all walks of life, from undergraduate students to university professors, from mathematicians, computers scientists and engineers to physicists, chemists and biologists.
As the healthcare industry continues to expand, it must utilize technology to ensure efficiencies are maintained. Healthcare needs to move in a direction where computational methods and algorithms can relieve the routine work of medical doctors, leaving them more time to carry out more important and skilled tasks such as surgery. Computational Methods and Algorithms for Medicine and Optimized Clinical Practice discusses some of the most interesting aspects of theoretical and applied research covering complementary facets of computational methods and algorithms to achieve greater efficiency and support medical personnel. Featuring research on topics such as healthcare reform, artificial intelligence, and disease detection, this book will particularly appeal to medical professionals and practitioners, hospitals, administrators, students, researchers, and academicians.
This book highlights cutting-edge research in the field of network science, offering scientists, researchers, students, and practitioners a unique update on the latest advances in theory and a multitude of applications. It presents the peer-reviewed proceedings of the Eighth International Conference on Complex Networks and their Applications (COMPLEX NETWORKS 2019), which took place in Lisbon, Portugal, on December 10-12, 2019. The carefully selected papers cover a wide range of theoretical topics such as network models and measures; community structure, and network dynamics; diffusion, epidemics, and spreading processes; resilience and control as well as all the main network applications, including social and political networks; networks in finance and economics; biological and neuroscience networks; and technological networks.
This book gathers the proceedings of the Multidisciplinary International Conference of Research Applied to Defense and Security (MICRADS), held at the Eloy Alfaro Military Academy (ESMIL) in Quito, Ecuador, on May 13-15,2020. It covers a broad range of topics in systems, communication, and defense; strategy and political-administrative vision in defense; and engineering and technologies applied to defense. Given its scope, it offers a valuable resource for practitioners, researchers, and students alike. |
You may like...
Artificial Intelligence Annual Volume…
Marco Antonio Aceves-Fernandez, Carlos M. Travieso-Gonzalez
Hardcover
Advanced Introduction to Artificial…
Tom Davenport, John Glaser, …
Paperback
R573
Discovery Miles 5 730
Advanced Introduction to Law and…
Woodrow Barfield, Ugo Pagallo
Paperback
R639
Discovery Miles 6 390
Stochastic Processes and Their…
Christo Ananth, N. Anbazhagan, …
Hardcover
R7,041
Discovery Miles 70 410
Managing AI Wisely - From Development to…
Lauren Waardenburg, Marleen Huysman, …
Hardcover
R2,267
Discovery Miles 22 670
|