Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Computing & IT > Applications of computing > Artificial intelligence > General
As humans interact more often and more intimately with computers, and as computational systems become an ever more important element of our society, playing roles in education, the production of culture and goods, and management, it is inevitable that we should seek to interact with these systems in ways that take advantage of our powerful emotional capabilities. Creating Synthetic Emotions through Technological and Robotic Advancements compiles progressive research in the emerging and groundbreaking fields of artificial emotions, affective computing, and sociable robotics that allow humans to begin the once impossible-seeming task of interacting with robots, systems, devices, and agents. This landmark volume brings together expert international researchers to expound upon these topics as synthetic emotions move toward becoming a daily reality.
This book covers COVID-19 related research works and focuses on recent advances in the Internet of Things (IoT) in smart healthcare technologies. It includes reviews and original works on COVID-19 in terms of e-healthcare, medicine technology, life support systems, fast detection, diagnoses, developed technologies and innovative solutions, bioinformatics, datasets, apps for diagnosis, solutions for monitoring and control of the spread of COVID-19, among other topics. The book covers comprehensive studies from bioelectronics and biomedical engineering, artificial intelligence, and big data with a prime focus on COVID-19 pandemic.
This book is intended to give researchers and practitioners in the cross-cutting fields of artificial intelligence, machine learning (AI/ML) and cyber security up-to-date and in-depth knowledge of recent techniques for improving the vulnerabilities of AI/ML systems against attacks from malicious adversaries. The ten chapters in this book, written by eminent researchers in AI/ML and cyber-security, span diverse, yet inter-related topics including game playing AI and game theory as defenses against attacks on AI/ML systems, methods for effectively addressing vulnerabilities of AI/ML operating in large, distributed environments like Internet of Things (IoT) with diverse data modalities, and, techniques to enable AI/ML systems to intelligently interact with humans that could be malicious adversaries and/or benign teammates. Readers of this book will be equipped with definitive information on recent developments suitable for countering adversarial threats in AI/ML systems towards making them operate in a safe, reliable and seamless manner.
Edge computing is focused on devices and technologies that are attached to the internet of things (IoT). Identifying IoT use across a range of industries and measuring strategic values helps identify what technologies to pursue and can avoid wasted resources on deployments with limited values. The Handbook of Research on Edge Computing and Computational Intelligence Paradigms for the IoT is a critical research book that provides a complete insight on the recent advancements and integration of intelligence in IoT. This book highlights various topics such as disaster prediction, governance, and healthcare. It is an excellent resource for researchers, working professionals, academicians, policymakers, and defense companies.
Research on living systems, human level artificial systems, and machines that exhibit intelligent behavioral characteristics is fundamental in order to tackle complex and dynamic issues in nature and create applicable solutions. Investigations into Living Systems, Artificial Life, and Real-World Solutions provides original research on the theoretical and applied aspects of artificial life, as well as addresses scientific, psychological, and social issues of synthetic life-like behavior and abilities. This book is essential for researchers, students, and scientists interested in the emerging discipline of artificial life to further understand and solve real-world problems.
This contributed volume discusses essential topics and the fundamentals for Big Data Emergency Management and primarily focusses on the application of Big Data for Emergency Management. It walks the reader through the state of the art, in different facets of the big disaster data field. This includes many elements that are important for these technologies to have real-world impact. This book brings together different computational techniques from: machine learning, communication network analysis, natural language processing, knowledge graphs, data mining, and information visualization, aiming at methods that are typically used for processing big emergency data. This book also provides authoritative insights and highlights valuable lessons by distinguished authors, who are leaders in this field. Emergencies are severe, large-scale, non-routine events that disrupt the normal functioning of a community or a society, causing widespread and overwhelming losses and impacts. Emergency Management is the process of planning and taking actions to minimize the social and physical impact of emergencies and reduces the community's vulnerability to the consequences of emergencies. Information exchange before, during and after the disaster periods can greatly reduce the losses caused by the emergency. This allows people to make better use of the available resources, such as relief materials and medical supplies. It also provides a channel through which reports on casualties and losses in each affected area, can be delivered expeditiously. Big Data-Driven Emergency Management refers to applying advanced data collection and analysis technologies to achieve more effective and responsive decision-making during emergencies. Researchers, engineers and computer scientists working in Big Data Emergency Management, who need to deal with large and complex sets of data will want to purchase this book. Advanced-level students interested in data-driven emergency/crisis/disaster management will also want to purchase this book as a study guide.
This book tackles the latest research trends in technology acceptance models and theories. It presents high-quality empirical and review studies focusing on the main theoretical models and their applications across various technologies and contexts. It also provides insights into the theoretical and practical aspects of different technological innovations that assist decision-makers in formulating the required policies and procedures for adopting a specific technology.
This Book is comprised of solutions for the treatment of cognitive diseases with Bionics or Bioinspired Algorithms using future technologies such as artificial intelligence, machine learning, Internet of Things (IoT), data science, and more. Studying the behavior of nature and providing the medical engineering solutions would not only be unique but would result in substantial contribution in solution of so many cognitive disease problems which are not detected correctly in initial stages. This publication would be a breakthrough in the field of medical science, especially in the field of cognitive diseases by providing solutions in the form of algorithms and devices that could be useful for the brain disease patient for early detection. This book is essential for various medical research centers, engineering institutions across the world, medical colleges, biomedical research centers, and electronics and communication research centers.
This book focuses on the latest endeavors relating researches and developments conducted in fields of control, robotics and automation. Through more than ten revised and extended articles, the present book aims to provide the most up-to-date state of the art of the aforementioned fields allowing researcher, Ph.D. students and engineers not only updating their knowledge but also benefiting from the source of inspiration that represents the set of selected articles of the book. The deliberate intention of editors to cover as well theoretical facets of those fields as their practical accomplishments and implementations offers the benefit of gathering in the same volume a factual and well-balanced prospect of nowadays research in those topics. Special attention toward "Intelligent Robots and Control" may characterize another benefit of this book.
This book presents several novel constructive methodologies for global stabilization and H-infinity control in switched dynamic systems by using the systems' structure information. The main features of these new approaches are twofold: i) Novel Lyapunov functions are constructed and new switching strategies are designed to guarantee global finite-time stabilization of the closed-loop switched dynamic systems,while ii) without posing any internal stability requirements on subsystems, the standard H-infinity control problem of the switched dynamic systems is solved by means of dwell-time switching techniques. Systematically presenting constructive methods for analyzing and synthesizing switched systems, the content is of great significance to theoretical research and practical applications involving switched systems alike. The book provides a unified framework for stability analysis, stabilization and H-infinity control of switched systems, making it a valuable resource for researchers and graduate students who want to learn about the state of the art in the analysis and synthesis of switched systems, as well as recent advances in switched linear systems. In addition, it offers a wealth of cutting-edge constructive methods and algorithm designs for researchers who work with switched dynamic systems and graduate students of control theory and control engineering.
This book is dedicated to addressing the major challenges in fighting COVID-19 using artificial intelligence (AI) and machine learning (ML) - from cost and complexity to availability and accuracy. The aim of this book is to focus on both the design and implementation of AI-based approaches in proposed COVID-19 solutions that are enabled and supported by sensor networks, cloud computing, and 5G and beyond. This book presents research that contributes to the application of ML techniques to the problem of computer communication-assisted diagnosis of COVID-19 and similar diseases. The authors present the latest theoretical developments, real-world applications, and future perspectives on this topic. This book brings together a broad multidisciplinary community, aiming to integrate ideas, theories, models, and techniques from across different disciplines on intelligent solutions/systems, and to inform how cognitive systems in Next Generation Networks (NGN) should be designed, developed, and evaluated while exchanging and processing critical health information. Targeted readers are from varying disciplines who are interested in implementing the smart planet/environments vision via wireless/wired enabling technologies.
This book presents best selected papers presented at the 4th International Conference on Smart Computing and Informatics (SCI 2020), held at the Department of Computer Science and Engineering, Vasavi College of Engineering (Autonomous), Hyderabad, Telangana, India. It presents advanced and multi-disciplinary research towards the design of smart computing and informatics. The theme is on a broader front which focuses on various innovation paradigms in system knowledge, intelligence and sustainability that may be applied to provide realistic solutions to varied problems in society, environment and industries. The scope is also extended towards the deployment of emerging computational and knowledge transfer approaches, optimizing solutions in various disciplines of science, technology and health care.
This book examines modern methods of creating models and measures in measurements, physical and probabilistic measures, models, spaces and bases of signals and fields, deterministic and probabilistic models and measures of angular quantities. Examples of their use on a circle and in phase measurements are given; models and measures for diagnostics in the electric power industry, in standardless measurements of the characteristics of composite materials, in environmental pollution monitoring systems, also with using unmanned aerial vehicles, are considered. Most of the presented results were obtained on the basis of the Institute of Engineering Thermophysics of National Academy of Sciences of Ukraine. The book is intended for researchers, engineers, as well as lecturers, graduate students and students of higher educational institutions dealing with the problems of measurements, monitoring and diagnostics of complex technical objects.
This volume gathers papers presented at the Workshop on Computational Diffusion MRI (CDMRI 2019), held under the auspices of the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI), which took place in Shenzhen, China on October 17, 2019. This book presents the latest advances in the rapidly expanding field of diffusion MRI. It shares new perspectives on the latest research challenges for those currently working in the field, but also offers a valuable starting point for anyone interested in learning about computational techniques in diffusion MRI. The book includes rigorous mathematical derivations, a wealth of rich, full-colour visualisations and extensive clinically relevant results. As such, it will be of interest to researchers and practitioners in the fields of computer science, MRI physics and applied mathematics. Readers will find contributions covering a broad range of topics, from the mathematical foundations of the diffusion process and signal generation, to new computational methods and estimation techniques for the in vivo recovery of microstructural and connectivity features, as well as diffusion-relaxometry and frontline applications in research and clinical practice. This edition includes invited works from high-profile researchers with a specific focus on three new and important topics that are gaining momentum within the diffusion MRI community, including diffusion MRI signal acquisition and processing strategies, machine learning for diffusion MRI, and diffusion MRI outside the brain and clinical applications.
This book constitutes the refereed proceedings of the 20th International TRIZ Future Conference on Automated Invention for Smart Industries, TFC 2020, held in Cluj-Napoca, Romania, in October 2020 and sponsored by IFIP WG 5.4. The conference was held virtually.The 34 full papers presented were carefully reviewed and selected from 91 submissions. They are organized in the following thematic sections: computing TRIZ; education and pedagogy; sustainable development; tools and techniques of TRIZ for enhancing design; TRIZ and system engineering; TRIZ and complexity; and cross-fertilization of TRIZ for innovation management.
This book introduces readers to the fundamentals of transportation problems under the fuzzy environment and its extensions. It also discusses the limitations and drawbacks of (1) recently proposed aggregation operators under the fuzzy environment and its various extensions; (2) recently proposed methods for solving transportation problems under the fuzzy environment; and (3) recently proposed methods for solving transportation problems under the intuitionistic fuzzy environment. In turn, the book proposes simplified methods to overcome these limitations.
The five-volume set IFIP AICT 630, 631, 632, 633, and 634 constitutes the refereed proceedings of the International IFIP WG 5.7 Conference on Advances in Production Management Systems, APMS 2021, held in Nantes, France, in September 2021.*The 378 papers presented were carefully reviewed and selected from 529 submissions. They discuss artificial intelligence techniques, decision aid and new and renewed paradigms for sustainable and resilient production systems at four-wall factory and value chain levels. The papers are organized in the following topical sections: Part I: artificial intelligence based optimization techniques for demand-driven manufacturing; hybrid approaches for production planning and scheduling; intelligent systems for manufacturing planning and control in the industry 4.0; learning and robust decision support systems for agile manufacturing environments; low-code and model-driven engineering for production system; meta-heuristics and optimization techniques for energy-oriented manufacturing systems; metaheuristics for production systems; modern analytics and new AI-based smart techniques for replenishment and production planning under uncertainty; system identification for manufacturing control applications; and the future of lean thinking and practice Part II: digital transformation of SME manufacturers: the crucial role of standard; digital transformations towards supply chain resiliency; engineering of smart-product-service-systems of the future; lean and Six Sigma in services healthcare; new trends and challenges in reconfigurable, flexible or agile production system; production management in food supply chains; and sustainability in production planning and lot-sizing Part III: autonomous robots in delivery logistics; digital transformation approaches in production management; finance-driven supply chain; gastronomic service system design; modern scheduling and applications in industry 4.0; recent advances in sustainable manufacturing; regular session: green production and circularity concepts; regular session: improvement models and methods for green and innovative systems; regular session: supply chain and routing management; regular session: robotics and human aspects; regular session: classification and data management methods; smart supply chain and production in society 5.0 era; and supply chain risk management under coronavirus Part IV: AI for resilience in global supply chain networks in the context of pandemic disruptions; blockchain in the operations and supply chain management; data-based services as key enablers for smart products, manufacturing and assembly; data-driven methods for supply chain optimization; digital twins based on systems engineering and semantic modeling; digital twins in companies first developments and future challenges; human-centered artificial intelligence in smart manufacturing for the operator 4.0; operations management in engineer-to-order manufacturing; product and asset life cycle management for smart and sustainable manufacturing systems; robotics technologies for control, smart manufacturing and logistics; serious games analytics: improving games and learning support; smart and sustainable production and supply chains; smart methods and techniques for sustainable supply chain management; the new digital lean manufacturing paradigm; and the role of emerging technologies in disaster relief operations: lessons from COVID-19 Part V: data-driven platforms and applications in production and logistics: digital twins and AI for sustainability; regular session: new approaches for routing problem solving; regular session: improvement of design and operation of manufacturing systems; regular session: crossdock and transportation issues; regular session: maintenance improvement and lifecycle management; regular session: additive manufacturing and mass customization; regular session: frameworks and conceptual modelling for systems and services efficiency; regular session: optimization of production and transportation systems; regular session: optimization of supply chain agility and reconfigurability; regular session: advanced modelling approaches; regular session: simulation and optimization of systems performances; regular session: AI-based approaches for quality and performance improvement of production systems; and regular session: risk and performance management of supply chains *The conference was held online.
In recent years, the need for smart equipment has increased exponentially with the upsurge in technological advances. To work to their fullest capacity, these devices need to be able to communicate with other devices in their network to exchange information and receive instructions. Computational Intelligence in the Internet of Things is an essential reference source that provides relevant theoretical frameworks and the latest empirical research findings in the area of computational intelligence and the Internet of Things. Featuring research on topics such as data analytics, machine learning, and neural networks, this book is ideally designed for IT specialists, managers, professionals, researchers, and academicians.
This book features extended versions of selected papers from the International Conference on Computer Communication and Internet of Things (ICCCIoT 2020). Presenting recent research addressing new trends and challenges, and promising technologies and developments, it covers various topics related to IoT (Internet of Things) and communications, and machine learning for applications such as energy management systems, smart asthma alerts, smart irrigation systems, cloud healthcare systems, preventing side channel attacks, and cooperative spectrum sensing in cognitive radio networks.
This book is the first overview on Deep Learning (DL) for biomedical data analysis. It surveys the most recent techniques and approaches in this field, with both a broad coverage and enough depth to be of practical use to working professionals. This book offers enough fundamental and technical information on these techniques, approaches and the related problems without overcrowding the reader's head. It presents the results of the latest investigations in the field of DL for biomedical data analysis. The techniques and approaches presented in this book deal with the most important and/or the newest topics encountered in this field. They combine fundamental theory of Artificial Intelligence (AI), Machine Learning (ML) and DL with practical applications in Biology and Medicine. Certainly, the list of topics covered in this book is not exhaustive but these topics will shed light on the implications of the presented techniques and approaches on other topics in biomedical data analysis. The book finds a balance between theoretical and practical coverage of a wide range of issues in the field of biomedical data analysis, thanks to DL. The few published books on DL for biomedical data analysis either focus on specific topics or lack technical depth. The chapters presented in this book were selected for quality and relevance. The book also presents experiments that provide qualitative and quantitative overviews in the field of biomedical data analysis. The reader will require some familiarity with AI, ML and DL and will learn about techniques and approaches that deal with the most important and/or the newest topics encountered in the field of DL for biomedical data analysis. He/she will discover both the fundamentals behind DL techniques and approaches, and their applications on biomedical data. This book can also serve as a reference book for graduate courses in Bioinformatics, AI, ML and DL. The book aims not only at professional researchers and practitioners but also graduate students, senior undergraduate students and young researchers. This book will certainly show the way to new techniques and approaches to make new discoveries. |
You may like...
Advanced Introduction to Artificial…
Tom Davenport, John Glaser, …
Paperback
R573
Discovery Miles 5 730
Research Handbook on the Law of…
Woodrow Barfield, Ugo Pagallo
Paperback
R1,471
Discovery Miles 14 710
Stochastic Processes and Their…
Christo Ananth, N. Anbazhagan, …
Hardcover
R7,041
Discovery Miles 70 410
Managing AI Wisely - From Development to…
Lauren Waardenburg, Marleen Huysman, …
Hardcover
R2,267
Discovery Miles 22 670
AI, IoT, and Blockchain Breakthroughs in…
Kavita Saini, N.S. Gowri Ganesh, …
Hardcover
R6,259
Discovery Miles 62 590
|