![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > Applications of computing > Artificial intelligence > General
Learn how to create, train, and tweak large language models (LLMs) by building one from the ground up! In Build a Large Language Model (from Scratch) bestselling author Sebastian Raschka guides you step by step through creating your own LLM. Each stage is explained with clear text, diagrams, and examples. You’ll go from the initial design and creation, to pretraining on a general corpus, and on to fine-tuning for specific tasks. Build a Large Language Model (from Scratch) teaches you how to:
Build a Large Language Model (from Scratch) takes you inside the AI black box to tinker with the internal systems that power generative AI. As you work through each key stage of LLM creation, you’ll develop an in-depth understanding of how LLMs work, their limitations, and their customization methods. Your LLM can be developed on an ordinary laptop, and used as your own personal assistant.
Diagnostic Biomedical Signal and Image Processing Applications: With Deep Learning Methods presents comprehensive research on both medical imaging and medical signals analysis. The book discusses classification, segmentation, detection, tracking and retrieval applications of non-invasive methods such as EEG, ECG, EMG, MRI, fMRI, CT and X-RAY, amongst others. These image and signal modalities include real challenges, which are the main themes that medical imaging and medical signal processing researchers focus on today. The book also emphasizes removing noise and specifying dataset key properties, with each chapter containing details of one of the medical imaging or medical signal modalities. Focusing on solving real medical problems using new deep learning and CNN approaches, this book will appeal to research scholars, graduate students, faculty members, R&D engineers, and biomedical engineers who want to learn how medical signals and images play an important role in the early diagnosis and treatment of diseases.
Robotics for Cell Manipulation and Characterization provides fundamental principles underpinning robotic cell manipulation and characterization, state-of-the-art technical advances in micro/nano robotics, new discoveries of cell biology enabled by robotic systems, and their applications in clinical diagnosis and treatment. This book covers several areas, including robotics, control, computer vision, biomedical engineering and life sciences using understandable figures and tables to enhance readers' comprehension and pinpoint challenges and opportunities for biological and biomedical research.
Data Ethics of Power takes a reflective and fresh look at the ethical implications of transforming everyday life and the world through the effortless, costless, and seamless accumulation of extra layers of data. By shedding light on the constant tensions that exist between ethical principles and the interests invested in this socio-technical transformation, the book bridges the theory and practice divide in the study of the power dynamics that underpin these processes of the digitalization of the world. Gry Hasselbalch expertly draws on nearly two decades of experience in the field, and key literature, to advance a better understanding of the challenges faced by big data and AI developers. She provides an innovative ethical framework for studying and governing Big-Data and Artificial Intelligence. Offering both a historical account and a theoretical analysis of power dynamics and their ethical implications, as well as incisive ideas to guide future research and governance practices, the book makes a significant contribution to the establishment of an emerging data and AI ethics discipline. This timely book is a must-read for scholars studying AI, data, and technology ethics. Policymakers in the regulatory, governance, public administration, and management sectors will find the practical proposals for a human-centric approach to big data and AI to be a valuable resource for revising and developing future policies.
This incisive book provides a much-needed examination of the legal issues arising from the data economy, particularly in the light of the expanding role of algorithms and artificial intelligence in business and industry. In doing so, it discusses the pressing question of how to strike a balance in the law between the interests of a variety of stakeholders, such as AI industry, businesses and consumers. Investigating issues at the intersection of trade secrets and personal data as well as the potential legal conflicts to which this can give rise, Gintare Surblyte-Namaviciene examines what kinds of changes to the legal framework the growing data economy may require. Through an analysis of the way in which EU competition law may tackle algorithm-related problems the book also identifies a regulatory gap in the case of algorithmic manipulation in the business-to-consumer relationship. The book further argues that control by public bodies over terms and conditions often used in the data economy may be necessary for the sake of consumer protection. Scholars in competition law and regulatory governance, particularly those with an interest in the impacts of technology, will find this to be critical reading. It will also be beneficial to practitioners and policy makers working at the intersections of regulation and technology.
Artificial Intelligence for Sustainable Value Creation provides a detailed and insightful exploration of both the possibilities and the challenges that accompany widespread Artificial Intelligence. Providing a cutting edge analysis of the impact of AI in business and society, the editors offer an opportunity to assess what is known about managing other forms of information systems, strategy, and marketing, and to re-examine this knowledge in situations involving AI. This comprehensive book explores how human- centric AI systems create value inside organizations, distinguishing three main components: ethical value, societal value, and business value. Using a multidisciplinary perspective, this discerning book addresses the interests of a wide spectrum of practitioners, students, and researchers alike who are interested in identifying the value generated by AI systems in management.
Studies on integer optimization in emergency management have attracted engineers and scientists from various disciplines such as management, mathematics, computer science, and other fields. Although there are a large number of literature reports on integer planning and emergency events, few books systematically explain the combination of the two. Researchers need a clear and thorough presentation of the theory and application of integer programming methods for emergency management. Integer Optimization and its Computation in Emergency Management investigates the computation theory of integer optimization, developing integer programming methods for emergency management and explores related practical applications. Pursuing a holistic approach, this book establishes a fundamental framework for this topic, intended for graduate students who are interested in operations research and optimization, researchers investigating emergency management, and algorithm design engineers working on integer programming or other optimization applications.
Data Analysis for Social Microblogging Platforms explores the nature of microblog datasets, also covering the larger field which focuses on information, data and knowledge in the context of natural language processing. The book investigates a range of significant computational techniques which enable data and computer scientists to recognize patterns in these vast datasets, including machine learning, data mining algorithms, rough set and fuzzy set theory, evolutionary computations, combinatorial pattern matching, clustering, summarization and classification. Chapters focus on basic online micro blogging data analysis research methodologies, community detection, summarization application development, performance evaluation and their applications in big data.
Intelligent Edge Computing for Cyber Physical Applications introduces state-of-the-art research methodologies, tools and techniques, challenges, and solutions with further research opportunities in the area of edge-based cyber-physical systems. The book presents a comprehensive review of recent literature and analysis of different techniques for building edge-based CPS. In addition, it describes how edge-based CPS can be built to seamlessly interact with physical machines for optimal performance, covering various aspects of edge computing architectures for dynamic resource provisioning, mobile edge computing, energy saving scenarios, and different security issues. Sections feature practical use cases of edge-computing which will help readers understand the workings of edge-based systems in detail, taking into account the need to present intellectual challenges while appealing to a broad readership, including academic researchers, practicing engineers and managers, and graduate students.
Elgar Advanced Introductions are stimulating and thoughtful introductions to major fields in the social sciences and law, expertly written by the world's leading scholars. Designed to be accessible yet rigorous, they offer concise and lucid surveys of the substantive and policy issues associated with discrete subject areas. Woodrow Barfield and Ugo Pagallo present a succinct introduction to the legal issues related to the design and use of artificial intelligence (AI). Exploring human rights, constitutional law, data protection, criminal law, tort law, and intellectual property law, they consider the laws of a number of jurisdictions including the US, the European Union, Japan, and China, making reference to case law and statutes. Key features include: a critical insight into human rights and constitutional law issues which may be affected by the use of AI discussion of the concept of legal personhood and how the law might respond as AI evolves in intelligence an introduction to current laws and statutes which apply to AI and an identification of the areas where future challenges to the law may arise. This Advanced Introduction is ideal for law and social science students with an interest in how the law applies to AI. It also provides a useful entry point for legal practitioners seeking an understanding of this emerging field.
Artificial Intelligence and Machine Learning in Smart City Planning shows the reader practical applications of AIML techniques and describes recent advancements in this area in various sectors. Owing to the multidisciplinary nature, this book primarily focuses on the concepts of AIML and its methodologies such as evolutionary techniques, neural networks, machine learning, deep learning, block chain technology, big data analytics, and image processing in the context of smart cities. The text also discusses possible solutions to different challenges posed by smart cities by presenting cutting edge AIML techniques using different methodologies, as well as future directions for those same techniques.
Integrated Human-Machine Intelligence: Beyond Artificial Intelligence focuses on deep situational awareness in human-computer integration, covering the interaction and integration mechanisms of human intelligence, machine intelligence and environmental systems. The book also details the cognitive, philosophical, social, scientific and technological, and military theories and methods of human-computer division, cooperation and collaborative decision-making to provide basic theoretical support for a development strategy in the field of national intelligence. Sections focus on describing a new form of intelligence produced by the interaction of human, machine and environmental systems which will become the next generation of AI. From the perspective of deep situational awareness in human-computer integration, the book studies the interaction and integration mechanisms of human intelligence, machine intelligence and environmental systems. In addition, it details the cognitive, philosophical, social, scientific and technological, and military theories and methods of human-computer division, cooperation and collaborative decision-making, so as to provide basic theoretical support for a development strategy in the field of national intelligence.
Intelligent Nanotechnology: Merging Nanoscience and Artificial Intelligence provides an overview of advances in science and technology made possible by the convergence of nanotechnology and artificial intelligence (AI). Sections focus on AI-enhanced design, characterization and manufacturing and the use of AI to improve important material properties, with an emphasis on mechanical, photonic, electronic and magnetic properties. Designing benign nanomaterials through the prediction of their impact on biology and the environment is also discussed. Other sections cover the use of AI in the acquisition and analysis of data in experiments and AI technologies that have been enhanced through nanotechnology platforms. Final sections review advances in applications enabled by the merging of nanotechnology and artificial intelligence, including examples from biomedicine, chemistry and automated research.
Explainable artificial intelligence is proficient in operating and analyzing the unconstrainted environment in fields like robotic medicine, robotic treatment, and robotic surgery, which rely on computational vision for analyzing complex situations. Explainable artificial intelligence is a well-structured customizable technology that makes it possible to generate promising unbiased outcomes. The model's adaptability facilitates the management of heterogeneous healthcare data and the visualization of biological structures through virtual reality. Explainable artificial intelligence has newfound applications in the healthcare industry, such as clinical trial matching, continuous healthcare monitoring, probabilistic evolutions, and evidence-based mechanisms. Principles and Methods of Explainable Artificial Intelligence in Healthcare discusses explainable artificial intelligence and its applications in healthcare, providing a broad overview of state-of-the-art approaches for accurate analysis and diagnosis. The book also encompasses computational vision processing techniques that handle complex data like physiological information, electronic healthcare records, and medical imaging data that assist in earlier prediction. Covering topics such as neural networks and disease detection, this reference work is ideal for industry professionals, practitioners, academicians, researchers, scholars, instructors, and students.
In healthcare, a digital twin is a digital representation of a patient or healthcare system using integrated simulations and service data. The digital twin tracks a patient's records, crosschecks them against registered patterns and analyses any diseases or contra indications. The digital twin uses adaptive analytics and algorithms to produce accurate prognoses and suggest appropriate interventions. A digital twin can run various medical scenarios before treatment is initiated on the patient, thus increasing patient safety as well as providing the most appropriate treatments to meet the patient's requirements. Digital Twin Technologies for Healthcare 4.0 discusses how the concept of the digital twin can be merged with other technologies, such as artificial intelligence (AI), machine learning (ML), big data analytics, IoT and cloud data management, for the improvement of healthcare systems and processes. The book also focuses on the various research perspectives and challenges in implementation of digital twin technology in terms of data analysis, cloud management and data privacy issues. With chapters on visualisation techniques, prognostics and health management, this book is a must-have for researchers, engineers and IT professionals in healthcare as well as those involved in using digital twin technology, AI, IoT & big data analytics for novel applications.
AI is going to change your world – but don’t panic.
The advancement in FinTech especially artificial intelligence (AI) and machine learning (ML), has significantly affected the way financial services are offered and adopted today. Important financial decisions such as investment decision making, macroeconomic analysis, and credit evaluation are getting more complex in the field of finance. ML is used in many financial companies which are making a significant impact on financial services. With the increasing complexity of financial transaction processes, ML can reduce operational costs through process automation which can automate repetitive tasks and increase productivity. Among others, ML can analyze large volumes of historical data and make better trading decisions to increase revenue. This book provides an exhaustive overview of the roles of AI and ML algorithms in financial sectors with special reference to complex financial applications such as financial risk management in a big data environment. In addition, it provides a collection of high-quality research works that address broad challenges in both theoretical and application aspects of AI in the field of finance.
Human-Centered Artificial Intelligence: Research and Applications presents current theories, fundamentals, techniques and diverse applications of human-centered AI. Sections address the question, "are AI models explainable, interpretable and understandable?, introduce readers to the design and development process, including mind perception and human interfaces, explore various applications of human-centered AI, including human-robot interaction, healthcare and decision-making, and more. As human-centered AI aims to push the boundaries of previously limited AI solutions to bridge the gap between machine and human, this book is an ideal update on the latest advances.
Artificial Intelligence Methods for Optimization of the Software Testing Process: With Practical Examples and Exercises presents different AI-based solutions for overcoming the uncertainty found in many initial testing problems. The concept of intelligent decision making is presented as a multi-criteria, multi-objective undertaking. The book provides guidelines on how to manage diverse types of uncertainty with intelligent decision-making that can help subject matter experts in many industries improve various processes in a more efficient way. As the number of required test cases for testing a product can be large (in industry more than 10,000 test cases are usually created). Executing all these test cases without any particular order can impact the results of the test execution, hence this book fills the need for a comprehensive resource on the topics on the how's, what's and whys. To learn more about Elsevier's Series, Uncertainty, Computational Techniques and Decision Intelligence, please visit this link: https://www.elsevier.com/books-and-journals/book-series/uncertainty-computational-techniques-and-decision-intelligence
Cyber security is a key focus in the modern world as more private information is stored and saved online. In order to ensure vital information is protected from various cyber threats, it is essential to develop a thorough understanding of technologies that can address cyber security challenges. Artificial intelligence has been recognized as an important technology that can be employed successfully in the cyber security sector. Due to this, further study on the potential uses of artificial intelligence is required. The Handbook of Research on Cyber Security Intelligence and Analytics discusses critical artificial intelligence technologies that are utilized in cyber security and considers various cyber security issues and their optimal solutions supported by artificial intelligence. Covering a range of topics such as malware, smart grid, data breachers, and machine learning, this major reference work is ideal for security analysts, cyber security specialists, data analysts, security professionals, computer scientists, government officials, researchers, scholars, academicians, practitioners, instructors, and students.
Anomaly Detection and Complex Event Processing over IoT Data Streams: With Application to eHealth and Patient Data Monitoring presents advanced processing techniques for IoT data streams and the anomaly detection algorithms over them. The book brings new advances and generalized techniques for processing IoT data streams, semantic data enrichment with contextual information at Edge, Fog and Cloud as well as complex event processing in IoT applications. The book comprises fundamental models, concepts and algorithms, architectures and technological solutions as well as their application to eHealth. Case studies, such as the bio-metric signals stream processing are presented -the massive amount of raw ECG signals from the sensors are processed dynamically across the data pipeline and classified with modern machine learning approaches including the Hierarchical Temporal Memory and Deep Learning algorithms. The book discusses adaptive solutions to IoT stream processing that can be extended to different use cases from different fields of eHealth, to enable a complex analysis of patient data in a historical, predictive and even prescriptive application scenarios. The book ends with a discussion on ethics, emerging research trends, issues and challenges of IoT data stream processing.
Artificial Intelligence for Healthcare Applications and Management introduces application domains of various AI algorithms across healthcare management. Instead of discussing AI first and then exploring its applications in healthcare afterward, the authors attack the problems in context directly, in order to accelerate the path of an interested reader toward building industrial-strength healthcare applications. Readers will be introduced to a wide spectrum of AI applications supporting all stages of patient flow in a healthcare facility. The authors explain how AI supports patients throughout a healthcare facility, including diagnosis and treatment recommendations needed to get patients from the point of admission to the point of discharge while maintaining quality, patient safety, and patient/provider satisfaction. AI methods are expected to decrease the burden on physicians, improve the quality of patient care, and decrease overall treatment costs. Current conditions affected by COVID-19 pose new challenges for healthcare management and learning how to apply AI will be important for a broad spectrum of students and mature professionals working in medical informatics. This book focuses on predictive analytics, health text processing, data aggregation, management of patients, and other fields which have all turned out to be bottlenecks for the efficient management of coronavirus patients. |
You may like...
Advances in Biomedical Polymers and…
Kunal Pal, Sarika Verma, …
Paperback
R5,401
Discovery Miles 54 010
Functional and Technical Textiles
Subhankar Maity, Kunal Singha, …
Paperback
R5,417
Discovery Miles 54 170
The Brothers Karamazov - A Novel in Four…
Fyodor Dostoevsky
Paperback
|