![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Computing & IT > Applications of computing > Artificial intelligence > General
In healthcare, a digital twin is a digital representation of a patient or healthcare system using integrated simulations and service data. The digital twin tracks a patient's records, crosschecks them against registered patterns and analyses any diseases or contra indications. The digital twin uses adaptive analytics and algorithms to produce accurate prognoses and suggest appropriate interventions. A digital twin can run various medical scenarios before treatment is initiated on the patient, thus increasing patient safety as well as providing the most appropriate treatments to meet the patient's requirements. Digital Twin Technologies for Healthcare 4.0 discusses how the concept of the digital twin can be merged with other technologies, such as artificial intelligence (AI), machine learning (ML), big data analytics, IoT and cloud data management, for the improvement of healthcare systems and processes. The book also focuses on the various research perspectives and challenges in implementation of digital twin technology in terms of data analysis, cloud management and data privacy issues. With chapters on visualisation techniques, prognostics and health management, this book is a must-have for researchers, engineers and IT professionals in healthcare as well as those involved in using digital twin technology, AI, IoT & big data analytics for novel applications.
The advancement in FinTech especially artificial intelligence (AI) and machine learning (ML), has significantly affected the way financial services are offered and adopted today. Important financial decisions such as investment decision making, macroeconomic analysis, and credit evaluation are getting more complex in the field of finance. ML is used in many financial companies which are making a significant impact on financial services. With the increasing complexity of financial transaction processes, ML can reduce operational costs through process automation which can automate repetitive tasks and increase productivity. Among others, ML can analyze large volumes of historical data and make better trading decisions to increase revenue. This book provides an exhaustive overview of the roles of AI and ML algorithms in financial sectors with special reference to complex financial applications such as financial risk management in a big data environment. In addition, it provides a collection of high-quality research works that address broad challenges in both theoretical and application aspects of AI in the field of finance.
The Handbook on Socially Interactive Agents provides a comprehensive overview of the research fields of Embodied Conversational Agents Intelligent Virtual Agents and Social Robotics. Socially Interactive Agents (SIAs) whether virtually or physically embodied are autonomous agents that are able to perceive an environment including people or other agents reason decide how to interact and express attitudes such as emotions engagement or empathy. They are capable of interacting with people and one another in a socially intelligent manner using multimodal communicative behaviors with the goal to support humans in various domains.Written by international experts in their respective fields the book summarizes research in the many important research communities pertinent for SIAs while discussing current challenges and future directions. The handbook provides easy access to modeling and studying SIAs for researchers and students and aims at further bridging the gap between the research communities involved. In two volumes the book clearly structures the vast body of research. The first volume starts by introducing what is involved in SIAs research in particular research methodologies and ethical implications of developing SIAs. It further examines research on appearance and behavior focusing on multimodality. Finally social cognition for SIAs is investigated using different theoretical models and phenomena such as theory of mind or pro-sociality. The second volume starts with perspectives on interaction examined from different angles such as interaction in social space group interaction or long-term interaction. It also includes an extensive overview summarizing research and systems of human-agent platforms and of some of the major application areas of SIAs such as education aging support autism and games.
Human-Centered Artificial Intelligence: Research and Applications presents current theories, fundamentals, techniques and diverse applications of human-centered AI. Sections address the question, "are AI models explainable, interpretable and understandable?, introduce readers to the design and development process, including mind perception and human interfaces, explore various applications of human-centered AI, including human-robot interaction, healthcare and decision-making, and more. As human-centered AI aims to push the boundaries of previously limited AI solutions to bridge the gap between machine and human, this book is an ideal update on the latest advances.
Intelligent Nanotechnology: Merging Nanoscience and Artificial Intelligence provides an overview of advances in science and technology made possible by the convergence of nanotechnology and artificial intelligence (AI). Sections focus on AI-enhanced design, characterization and manufacturing and the use of AI to improve important material properties, with an emphasis on mechanical, photonic, electronic and magnetic properties. Designing benign nanomaterials through the prediction of their impact on biology and the environment is also discussed. Other sections cover the use of AI in the acquisition and analysis of data in experiments and AI technologies that have been enhanced through nanotechnology platforms. Final sections review advances in applications enabled by the merging of nanotechnology and artificial intelligence, including examples from biomedicine, chemistry and automated research.
The Handbook on Socially Interactive Agents provides a comprehensive overview of the research fields of Embodied Conversational Agents Intelligent Virtual Agents and Social Robotics. Socially Interactive Agents (SIAs) whether virtually or physically embodied are autonomous agents that are able to perceive an environment including people or other agents reason decide how to interact and express attitudes such as emotions engagement or empathy. They are capable of interacting with people and one another in a socially intelligent manner using multimodal communicative behaviors with the goal to support humans in various domains.Written by international experts in their respective fields the book summarizes research in the many important research communities pertinent for SIAs while discussing current challenges and future directions. The handbook provides easy access to modeling and studying SIAs for researchers and students and aims at further bridging the gap between the research communities involved. In two volumes the book clearly structures the vast body of research. The first volume starts by introducing what is involved in SIAs research in particular research methodologies and ethical implications of developing SIAs. It further examines research on appearance and behavior focusing on multimodality. Finally social cognition for SIAs is investigated using different theoretical models and phenomena such as theory of mind or pro-sociality. The second volume starts with perspectives on interaction examined from different angles such as interaction in social space group interaction or long-term interaction. It also includes an extensive overview summarizing research and systems of human-agent platforms and of some of the major application areas of SIAs such as education aging support autism and games.
Artificial Intelligence Methods for Optimization of the Software Testing Process: With Practical Examples and Exercises presents different AI-based solutions for overcoming the uncertainty found in many initial testing problems. The concept of intelligent decision making is presented as a multi-criteria, multi-objective undertaking. The book provides guidelines on how to manage diverse types of uncertainty with intelligent decision-making that can help subject matter experts in many industries improve various processes in a more efficient way. As the number of required test cases for testing a product can be large (in industry more than 10,000 test cases are usually created). Executing all these test cases without any particular order can impact the results of the test execution, hence this book fills the need for a comprehensive resource on the topics on the how's, what's and whys. To learn more about Elsevier's Series, Uncertainty, Computational Techniques and Decision Intelligence, please visit this link: https://www.elsevier.com/books-and-journals/book-series/uncertainty-computational-techniques-and-decision-intelligence
Cyber security is a key focus in the modern world as more private information is stored and saved online. In order to ensure vital information is protected from various cyber threats, it is essential to develop a thorough understanding of technologies that can address cyber security challenges. Artificial intelligence has been recognized as an important technology that can be employed successfully in the cyber security sector. Due to this, further study on the potential uses of artificial intelligence is required. The Handbook of Research on Cyber Security Intelligence and Analytics discusses critical artificial intelligence technologies that are utilized in cyber security and considers various cyber security issues and their optimal solutions supported by artificial intelligence. Covering a range of topics such as malware, smart grid, data breachers, and machine learning, this major reference work is ideal for security analysts, cyber security specialists, data analysts, security professionals, computer scientists, government officials, researchers, scholars, academicians, practitioners, instructors, and students.
IoT-enabled Unobtrusive Surveillance Systems for Smart Campus Safety Enables readers to understand a broad area of state-of-the-art research in physical IoT-enabled security IoT-enabled Unobtrusive Surveillance Systems for Smart Campus Safety describes new techniques in unobtrusive surveillance that enable people to act and communicate freely, while at the same time protecting them from malevolent behavior. It begins by characterizing the latest on surveillance systems deployed at smart campuses, miniatures of smart cities with more demanding frameworks that enable learning, social interaction, and creativity, and by performing a comparative assessment in the area of unobtrusive surveillance systems for smart campuses. A proposed taxonomy for IoT-enabled smart campus unfolds in five research dimensions: (1) physical infrastructure; (2) enabling technologies; (3) software analytics; (4) system security; and (5) research methodology. By applying this taxonomy and by adopting a weighted scoring model on the surveyed systems, the book presents the state of the art and then makes a comparative assessment to classify the systems. Finally, the book extracts valuable conclusions and inferences from this classification, providing insights and directions towards required services offered by unobtrusive surveillance systems for smart campuses. IoT-enabled Unobtrusive Surveillance Systems for Smart Campus Safety includes specific discussion of: Smart campus's prior work taxonomies and classifications, a proposed taxonomy, and an adopted weight scoring model Personal consumer benefits and potential social dilemmas encountered when adopting an unobtrusive surveillance system Systems that focus on smart buildings, public spaces, smart lighting and smart traffic lights, smart labs, and smart campus ambient intelligence A case study of a spatiotemporal authentication unobtrusive surveillance system for smart campus safety and emerging issues for further research directions IoT-enabled Unobtrusive Surveillance Systems for Smart Campus Safety is an essential resource for computer science and engineering academics, professionals, and every individual who is working and doing research in the area of unobtrusive surveillance systems and physical security to face malevolent behavior in smart campuses.
Anomaly Detection and Complex Event Processing over IoT Data Streams: With Application to eHealth and Patient Data Monitoring presents advanced processing techniques for IoT data streams and the anomaly detection algorithms over them. The book brings new advances and generalized techniques for processing IoT data streams, semantic data enrichment with contextual information at Edge, Fog and Cloud as well as complex event processing in IoT applications. The book comprises fundamental models, concepts and algorithms, architectures and technological solutions as well as their application to eHealth. Case studies, such as the bio-metric signals stream processing are presented -the massive amount of raw ECG signals from the sensors are processed dynamically across the data pipeline and classified with modern machine learning approaches including the Hierarchical Temporal Memory and Deep Learning algorithms. The book discusses adaptive solutions to IoT stream processing that can be extended to different use cases from different fields of eHealth, to enable a complex analysis of patient data in a historical, predictive and even prescriptive application scenarios. The book ends with a discussion on ethics, emerging research trends, issues and challenges of IoT data stream processing.
Artificial Intelligence for Healthcare Applications and Management introduces application domains of various AI algorithms across healthcare management. Instead of discussing AI first and then exploring its applications in healthcare afterward, the authors attack the problems in context directly, in order to accelerate the path of an interested reader toward building industrial-strength healthcare applications. Readers will be introduced to a wide spectrum of AI applications supporting all stages of patient flow in a healthcare facility. The authors explain how AI supports patients throughout a healthcare facility, including diagnosis and treatment recommendations needed to get patients from the point of admission to the point of discharge while maintaining quality, patient safety, and patient/provider satisfaction. AI methods are expected to decrease the burden on physicians, improve the quality of patient care, and decrease overall treatment costs. Current conditions affected by COVID-19 pose new challenges for healthcare management and learning how to apply AI will be important for a broad spectrum of students and mature professionals working in medical informatics. This book focuses on predictive analytics, health text processing, data aggregation, management of patients, and other fields which have all turned out to be bottlenecks for the efficient management of coronavirus patients.
Machine Learning Algorithms for Signal and Image Processing Enables readers to understand the fundamental concepts of machine and deep learning techniques with interactive, real-life applications within signal and image processing Machine Learning Algorithms for Signal and Image Processing aids the reader in designing and developing real-world applications using advances in machine learning to aid and enhance speech signal processing, image processing, computer vision, biomedical signal processing, adaptive filtering, and text processing. It includes signal processing techniques applied for pre-processing, feature extraction, source separation, or data decompositions to achieve machine learning tasks. Written by well-qualified authors and contributed to by a team of experts within the field, the work covers a wide range of important topics, such as: Speech recognition, image reconstruction, object classification and detection, and text processing Healthcare monitoring, biomedical systems, and green energy How various machine and deep learning techniques can improve accuracy, precision rate recall rate, and processing time Real applications and examples, including smart sign language recognition, fake news detection in social media, structural damage prediction, and epileptic seizure detection Professionals within the field of signal and image processing seeking to adapt their work further will find immense value in this easy-to-understand yet extremely comprehensive reference work. It is also a worthy resource for students and researchers in related fields who are looking to thoroughly understand the historical and recent developments that have been made in the field.
Mobile Edge Artificial Intelligence: Opportunities and Challenges presents recent advances in wireless technologies and nonconvex optimization techniques for designing efficient edge AI systems. The book includes comprehensive coverage on modeling, algorithm design and theoretical analysis. Through typical examples, the powerfulness of this set of systems and algorithms is demonstrated, along with their abilities to make low-latency, reliable and private intelligent decisions at network edge. With the availability of massive datasets, high performance computing platforms, sophisticated algorithms and software toolkits, AI has achieved remarkable success in many application domains. As such, intelligent wireless networks will be designed to leverage advanced wireless communications and mobile computing technologies to support AI-enabled applications at various edge mobile devices with limited communication, computation, hardware and energy resources.
As technology spreads globally, researchers and scientists continue to develop and study the strategy behind creating artificial life. This research field is ever expanding, and it is essential to stay current in the contemporary trends in artificial life, artificial intelligence, and machine learning. This an important topic for researchers and scientists in the field as well as industry leaders who may adapt this technology. The Handbook of Research on New Investigations in Artificial Life, AI, and Machine Learning provides concepts, theories, systems, technologies, and procedures that exhibit properties, phenomena, or abilities of any living system or human. This major reference work includes the most up-to-date research on techniques and technologies supporting AI and machine learning. Covering topics such as behavior classification, quality control, and smart medical devices, it serves as an essential resource for graduate students, academicians, stakeholders, practitioners, and researchers and scientists studying artificial life, cognition, AI, biological inspiration, machine learning, and more.
Intelligence Science: Leading the Age of Intelligence covers the emerging scientific research on the theory and technology of intelligence, bringing together disciplines such as neuroscience, cognitive science, and artificial intelligence to study the nature of intelligence, the functional simulation of intelligent behavior, and the development of new intelligent technologies. The book presents this complex, interdisciplinary area of study in an accessible volume, introducing foundational concepts and methods, and presenting the latest trends and developments. Chapters cover the Foundations of neurophysiology, Neural computing, Mind models, Perceptual intelligence, Language cognition, Learning, Memory, Thought, Intellectual development and cognitive structure, Emotion and affect, and more. This volume synthesizes a very rich and complex area of research, with an aim of stimulating new lines of enquiry.
Weather forecasting and climate behavioral analysis have traditionally been done using complicated physics models and accompanying atmospheric variables. However, the traditional approaches lack common tools, which can lead to incomplete information about the weather and climate conditions, in turn affecting the prediction accuracy rate. To address these problems, the advanced technological aspects through the spectrum of artificial intelligence of things (AIoT) models serve as a budding solution. Further study on artificial intelligence of things and how it can be utilized to improve weather forecasting and climatic behavioral analysis is crucial to appropriately employ the technology. Artificial Intelligence of Things for Weather Forecasting and Climatic Behavioral Analysis discusses practical applications of artificial intelligence of things for interpretation of weather patterns and how weather information can be used to make critical decisions about harvesting, aviation, etc. This book also considers artificial intelligence of things issues such as managing natural disasters that impact the lives of millions. Covering topics such as deep learning, remote sensing, and meteorological applications, this reference work is ideal for data scientists, industry professionals, researchers, academicians, scholars, practitioners, instructors, and students.
Dieses Werk, das sich umfassend mit der Einfuhrung von maschinellem Lernen, KI und dem IoT im Gesundheitswesen beschaftigt, richtet sich an Forschende, Fachkrafte im Gesundheitswesen, Wissenschaftler und Technologen. Die Nutzung von maschinellem Lernen und kunstlicher Intelligenz im Internet der Dinge (IoT) fur Anwendungen im Gesundheitswesen sowie die damit einhergehenden Herausforderungen werden ausfuhrlich eroertert. Das IoT erzeugt gewaltige Datenmengen von unterschiedlicher Qualitat. Die intelligente Verarbeitung und Analyse dieser Datenmengen sind der Schlussel zur Entwicklung intelligenter IoT-Anwendungen, wodurch Raum fur die Nutzung des maschinellen Lernens (ML) geschaffen wird. Mit ihren Recheninstrumenten, die bei der Erledigung bestimmter Aufgaben die menschliche Intelligenz ersetzen koennen, macht es die kunstliche Intelligenz (KI) moeglich, dass Computer aus Erfahrung lernen, sich an neue Eingaben anpassen und bisher von Menschen durchgefuhrte Aufgaben ubernehmen. Da IoT-Plattformen eine Schnittstelle bieten, um Daten von unterschiedlichen Geraten zusammenzutragen, lassen sie sich leicht mit AI/ML-Systemen verbinden. Vor diesen Hintergrund besteht der Wert der KI in ihrer Fahigkeit, schnell Erkenntnisse aus Daten zu gewinnen, automatisch Muster zu erkennen und Anomalien in den von intelligenten Sensoren und Geraten erzeugten Daten zu erkennen ? aus Angaben zu Temperatur, Druck, Luftfeuchtigkeit, Luftqualitat, Schwingungen und Gerauschen ? die fur eine schnelle Diagnose extrem hilfreich sein koennen.
Cognitive Computing for Human-Robot Interaction: Principles and Practices explores the efforts that should ultimately enable society to take advantage of the often-heralded potential of robots to provide economical and sustainable computing applications. This book discusses each of these applications, presents working implementations, and combines coherent and original deliberative architecture for human-robot interactions (HRI). Supported by experimental results, it shows how explicit knowledge management promises to be instrumental in building richer and more natural HRI, by pushing for pervasive, human-level semantics within the robot's deliberative system for sustainable computing applications. This book will be of special interest to academics, postgraduate students, and researchers working in the area of artificial intelligence and machine learning. Key features: Introduces several new contributions to the representation and management of humans in autonomous robotic systems; Explores the potential of cognitive computing, robots, and HRI to generate a deeper understanding and to provide a better contribution from robots to society; Engages with the potential repercussions of cognitive computing and HRI in the real world.
Intelligent machines are populating our social, economic and political spaces. These intelligent machines are powered by Artificial Intelligence technologies such as deep learning. They are used in decision making. One element of decision making is the issue of rationality. Regulations such as the General Data Protection Regulation (GDPR) require that decisions that are made by these intelligent machines are explainable. Rational Machines and Artificial Intelligence proposes that explainable decisions are good but the explanation must be rational to prevent these decisions from being challenged. Noted author Tshilidzi Marwala studies the concept of machine rationality and compares this to the rationality bounds prescribed by Nobel Laureate Herbert Simon and rationality bounds derived from the work of Nobel Laureates Richard Thaler and Daniel Kahneman. Rational Machines and Artificial Intelligence describes why machine rationality is flexibly bounded due to advances in technology. This effectively means that optimally designed machines are more rational than human beings. Readers will also learn whether machine rationality can be quantified and identify how this can be achieved. Furthermore, the author discusses whether machine rationality is subjective. Finally, the author examines whether a population of intelligent machines collectively make more rational decisions than individual machines. Examples in biomedical engineering, social sciences and the financial sectors are used to illustrate these concepts.
Artificial Intelligence for Future Generation Robotics offers a vision for potential future robotics applications for AI technologies. Each chapter includes theory and mathematics to stimulate novel research directions based on the state-of-the-art in AI and smart robotics. Organized by application into ten chapters, this book offers a practical tool for researchers and engineers looking for new avenues and use-cases that combine AI with smart robotics. As we witness exponential growth in automation and the rapid advancement of underpinning technologies, such as ubiquitous computing, sensing, intelligent data processing, mobile computing and context aware applications, this book is an ideal resource for future innovation.
Multinational organizations have begun to realize that sentiment mining plays an important role for decision making and market strategy. The revolutionary growth of digital marketing not only changes the market game, but also brings forth new opportunities for skilled professionals and expertise. Currently, the technologies are rapidly changing, and artificial intelligence (AI) and machine learning are contributing as game-changing technologies. These are not only trending but are also increasingly popular among data scientists and data analysts. New Opportunities for Sentiment Analysis and Information Processing provides interdisciplinary research in information retrieval and sentiment analysis including studies on extracting sentiments from textual data, sentiment visualization-based dimensionality reduction for multiple features, and deep learning-based multi-domain sentiment extraction. The book also optimizes techniques used for sentiment identification and examines applications of sentiment analysis and emotion detection. Covering such topics as communication networks, natural language processing, and semantic analysis, this book is essential for data scientists, data analysts, IT specialists, scientists, researchers, academicians, and students.
Mem-elements for Neuromorphic Circuits with Artificial Intelligence Applications illustrates recent advances in the field of mem-elements (memristor, memcapacitor, meminductor) and their applications in nonlinear dynamical systems, computer science, analog and digital systems, and in neuromorphic circuits and artificial intelligence. The book is mainly devoted to recent results, critical aspects and perspectives of ongoing research on relevant topics, all involving networks of mem-elements devices in diverse applications. Sections contribute to the discussion of memristive materials and transport mechanisms, presenting various types of physical structures that can be fabricated to realize mem-elements in integrated circuits and device modeling. As the last decade has seen an increasing interest in recent advances in mem-elements and their applications in neuromorphic circuits and artificial intelligence, this book will attract researchers in various fields.
Machine reading comprehension (MRC) is a cutting-edge technology in natural language processing (NLP). MRC has recently advanced significantly, surpassing human parity in several public datasets. It has also been widely deployed by industry in search engine and quality assurance systems. Machine Reading Comprehension: Algorithms and Practice performs a deep-dive into MRC, offering a resource on the complex tasks this technology involves. The title presents the fundamentals of NLP and deep learning, before introducing the task, models, and applications of MRC. This volume gives theoretical treatment to solutions and gives detailed analysis of code, and considers applications in real-world industry. The book includes basic concepts, tasks, datasets, NLP tools, deep learning models and architecture, and insight from hands-on experience. In addition, the title presents the latest advances from the past two years of research. Structured into three sections and eight chapters, this book presents the basis of MRC; MRC models; and hands-on issues in application. This book offers a comprehensive solution for researchers in industry and academia who are looking to understand and deploy machine reading comprehension within natural language processing. |
You may like...
The Accidental Mayor - Herman Mashaba…
Michael Beaumont
Paperback
(5)
Every Day Is An Opening Night - Our…
Des & Dawn Lindberg
Paperback
(1)
|