![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > Applications of computing > Artificial intelligence > General
Data Ethics of Power takes a reflective and fresh look at the ethical implications of transforming everyday life and the world through the effortless, costless, and seamless accumulation of extra layers of data. By shedding light on the constant tensions that exist between ethical principles and the interests invested in this socio-technical transformation, the book bridges the theory and practice divide in the study of the power dynamics that underpin these processes of the digitalization of the world. Gry Hasselbalch expertly draws on nearly two decades of experience in the field, and key literature, to advance a better understanding of the challenges faced by big data and AI developers. She provides an innovative ethical framework for studying and governing Big-Data and Artificial Intelligence. Offering both a historical account and a theoretical analysis of power dynamics and their ethical implications, as well as incisive ideas to guide future research and governance practices, the book makes a significant contribution to the establishment of an emerging data and AI ethics discipline. This timely book is a must-read for scholars studying AI, data, and technology ethics. Policymakers in the regulatory, governance, public administration, and management sectors will find the practical proposals for a human-centric approach to big data and AI to be a valuable resource for revising and developing future policies.
Robotics for Cell Manipulation and Characterization provides fundamental principles underpinning robotic cell manipulation and characterization, state-of-the-art technical advances in micro/nano robotics, new discoveries of cell biology enabled by robotic systems, and their applications in clinical diagnosis and treatment. This book covers several areas, including robotics, control, computer vision, biomedical engineering and life sciences using understandable figures and tables to enhance readers' comprehension and pinpoint challenges and opportunities for biological and biomedical research.
Artificial Intelligence for Sustainable Value Creation provides a detailed and insightful exploration of both the possibilities and the challenges that accompany widespread Artificial Intelligence. Providing a cutting edge analysis of the impact of AI in business and society, the editors offer an opportunity to assess what is known about managing other forms of information systems, strategy, and marketing, and to re-examine this knowledge in situations involving AI. This comprehensive book explores how human- centric AI systems create value inside organizations, distinguishing three main components: ethical value, societal value, and business value. Using a multidisciplinary perspective, this discerning book addresses the interests of a wide spectrum of practitioners, students, and researchers alike who are interested in identifying the value generated by AI systems in management.
This incisive book provides a much-needed examination of the legal issues arising from the data economy, particularly in the light of the expanding role of algorithms and artificial intelligence in business and industry. In doing so, it discusses the pressing question of how to strike a balance in the law between the interests of a variety of stakeholders, such as AI industry, businesses and consumers. Investigating issues at the intersection of trade secrets and personal data as well as the potential legal conflicts to which this can give rise, Gintare Surblyte-Namaviciene examines what kinds of changes to the legal framework the growing data economy may require. Through an analysis of the way in which EU competition law may tackle algorithm-related problems the book also identifies a regulatory gap in the case of algorithmic manipulation in the business-to-consumer relationship. The book further argues that control by public bodies over terms and conditions often used in the data economy may be necessary for the sake of consumer protection. Scholars in competition law and regulatory governance, particularly those with an interest in the impacts of technology, will find this to be critical reading. It will also be beneficial to practitioners and policy makers working at the intersections of regulation and technology.
The advancement in FinTech especially artificial intelligence (AI) and machine learning (ML), has significantly affected the way financial services are offered and adopted today. Important financial decisions such as investment decision making, macroeconomic analysis, and credit evaluation are getting more complex in the field of finance. ML is used in many financial companies which are making a significant impact on financial services. With the increasing complexity of financial transaction processes, ML can reduce operational costs through process automation which can automate repetitive tasks and increase productivity. Among others, ML can analyze large volumes of historical data and make better trading decisions to increase revenue. This book provides an exhaustive overview of the roles of AI and ML algorithms in financial sectors with special reference to complex financial applications such as financial risk management in a big data environment. In addition, it provides a collection of high-quality research works that address broad challenges in both theoretical and application aspects of AI in the field of finance.
Intelligent Edge Computing for Cyber Physical Applications introduces state-of-the-art research methodologies, tools and techniques, challenges, and solutions with further research opportunities in the area of edge-based cyber-physical systems. The book presents a comprehensive review of recent literature and analysis of different techniques for building edge-based CPS. In addition, it describes how edge-based CPS can be built to seamlessly interact with physical machines for optimal performance, covering various aspects of edge computing architectures for dynamic resource provisioning, mobile edge computing, energy saving scenarios, and different security issues. Sections feature practical use cases of edge-computing which will help readers understand the workings of edge-based systems in detail, taking into account the need to present intellectual challenges while appealing to a broad readership, including academic researchers, practicing engineers and managers, and graduate students.
Data Analysis for Social Microblogging Platforms explores the nature of microblog datasets, also covering the larger field which focuses on information, data and knowledge in the context of natural language processing. The book investigates a range of significant computational techniques which enable data and computer scientists to recognize patterns in these vast datasets, including machine learning, data mining algorithms, rough set and fuzzy set theory, evolutionary computations, combinatorial pattern matching, clustering, summarization and classification. Chapters focus on basic online micro blogging data analysis research methodologies, community detection, summarization application development, performance evaluation and their applications in big data.
Artificial Intelligence and Machine Learning in Smart City Planning shows the reader practical applications of AIML techniques and describes recent advancements in this area in various sectors. Owing to the multidisciplinary nature, this book primarily focuses on the concepts of AIML and its methodologies such as evolutionary techniques, neural networks, machine learning, deep learning, block chain technology, big data analytics, and image processing in the context of smart cities. The text also discusses possible solutions to different challenges posed by smart cities by presenting cutting edge AIML techniques using different methodologies, as well as future directions for those same techniques.
Integrated Human-Machine Intelligence: Beyond Artificial Intelligence focuses on deep situational awareness in human-computer integration, covering the interaction and integration mechanisms of human intelligence, machine intelligence and environmental systems. The book also details the cognitive, philosophical, social, scientific and technological, and military theories and methods of human-computer division, cooperation and collaborative decision-making to provide basic theoretical support for a development strategy in the field of national intelligence. Sections focus on describing a new form of intelligence produced by the interaction of human, machine and environmental systems which will become the next generation of AI. From the perspective of deep situational awareness in human-computer integration, the book studies the interaction and integration mechanisms of human intelligence, machine intelligence and environmental systems. In addition, it details the cognitive, philosophical, social, scientific and technological, and military theories and methods of human-computer division, cooperation and collaborative decision-making, so as to provide basic theoretical support for a development strategy in the field of national intelligence.
Elgar Advanced Introductions are stimulating and thoughtful introductions to major fields in the social sciences and law, expertly written by the world's leading scholars. Designed to be accessible yet rigorous, they offer concise and lucid surveys of the substantive and policy issues associated with discrete subject areas. Woodrow Barfield and Ugo Pagallo present a succinct introduction to the legal issues related to the design and use of artificial intelligence (AI). Exploring human rights, constitutional law, data protection, criminal law, tort law, and intellectual property law, they consider the laws of a number of jurisdictions including the US, the European Union, Japan, and China, making reference to case law and statutes. Key features include: a critical insight into human rights and constitutional law issues which may be affected by the use of AI discussion of the concept of legal personhood and how the law might respond as AI evolves in intelligence an introduction to current laws and statutes which apply to AI and an identification of the areas where future challenges to the law may arise. This Advanced Introduction is ideal for law and social science students with an interest in how the law applies to AI. It also provides a useful entry point for legal practitioners seeking an understanding of this emerging field.
In healthcare, a digital twin is a digital representation of a patient or healthcare system using integrated simulations and service data. The digital twin tracks a patient's records, crosschecks them against registered patterns and analyses any diseases or contra indications. The digital twin uses adaptive analytics and algorithms to produce accurate prognoses and suggest appropriate interventions. A digital twin can run various medical scenarios before treatment is initiated on the patient, thus increasing patient safety as well as providing the most appropriate treatments to meet the patient's requirements. Digital Twin Technologies for Healthcare 4.0 discusses how the concept of the digital twin can be merged with other technologies, such as artificial intelligence (AI), machine learning (ML), big data analytics, IoT and cloud data management, for the improvement of healthcare systems and processes. The book also focuses on the various research perspectives and challenges in implementation of digital twin technology in terms of data analysis, cloud management and data privacy issues. With chapters on visualisation techniques, prognostics and health management, this book is a must-have for researchers, engineers and IT professionals in healthcare as well as those involved in using digital twin technology, AI, IoT & big data analytics for novel applications.
Intelligent Nanotechnology: Merging Nanoscience and Artificial Intelligence provides an overview of advances in science and technology made possible by the convergence of nanotechnology and artificial intelligence (AI). Sections focus on AI-enhanced design, characterization and manufacturing and the use of AI to improve important material properties, with an emphasis on mechanical, photonic, electronic and magnetic properties. Designing benign nanomaterials through the prediction of their impact on biology and the environment is also discussed. Other sections cover the use of AI in the acquisition and analysis of data in experiments and AI technologies that have been enhanced through nanotechnology platforms. Final sections review advances in applications enabled by the merging of nanotechnology and artificial intelligence, including examples from biomedicine, chemistry and automated research.
Cyber security is a key focus in the modern world as more private information is stored and saved online. In order to ensure vital information is protected from various cyber threats, it is essential to develop a thorough understanding of technologies that can address cyber security challenges. Artificial intelligence has been recognized as an important technology that can be employed successfully in the cyber security sector. Due to this, further study on the potential uses of artificial intelligence is required. The Handbook of Research on Cyber Security Intelligence and Analytics discusses critical artificial intelligence technologies that are utilized in cyber security and considers various cyber security issues and their optimal solutions supported by artificial intelligence. Covering a range of topics such as malware, smart grid, data breachers, and machine learning, this major reference work is ideal for security analysts, cyber security specialists, data analysts, security professionals, computer scientists, government officials, researchers, scholars, academicians, practitioners, instructors, and students.
Explainable artificial intelligence is proficient in operating and analyzing the unconstrainted environment in fields like robotic medicine, robotic treatment, and robotic surgery, which rely on computational vision for analyzing complex situations. Explainable artificial intelligence is a well-structured customizable technology that makes it possible to generate promising unbiased outcomes. The model's adaptability facilitates the management of heterogeneous healthcare data and the visualization of biological structures through virtual reality. Explainable artificial intelligence has newfound applications in the healthcare industry, such as clinical trial matching, continuous healthcare monitoring, probabilistic evolutions, and evidence-based mechanisms. Principles and Methods of Explainable Artificial Intelligence in Healthcare discusses explainable artificial intelligence and its applications in healthcare, providing a broad overview of state-of-the-art approaches for accurate analysis and diagnosis. The book also encompasses computational vision processing techniques that handle complex data like physiological information, electronic healthcare records, and medical imaging data that assist in earlier prediction. Covering topics such as neural networks and disease detection, this reference work is ideal for industry professionals, practitioners, academicians, researchers, scholars, instructors, and students.
Weather forecasting and climate behavioral analysis have traditionally been done using complicated physics models and accompanying atmospheric variables. However, the traditional approaches lack common tools, which can lead to incomplete information about the weather and climate conditions, in turn affecting the prediction accuracy rate. To address these problems, the advanced technological aspects through the spectrum of artificial intelligence of things (AIoT) models serve as a budding solution. Further study on artificial intelligence of things and how it can be utilized to improve weather forecasting and climatic behavioral analysis is crucial to appropriately employ the technology. Artificial Intelligence of Things for Weather Forecasting and Climatic Behavioral Analysis discusses practical applications of artificial intelligence of things for interpretation of weather patterns and how weather information can be used to make critical decisions about harvesting, aviation, etc. This book also considers artificial intelligence of things issues such as managing natural disasters that impact the lives of millions. Covering topics such as deep learning, remote sensing, and meteorological applications, this reference work is ideal for data scientists, industry professionals, researchers, academicians, scholars, practitioners, instructors, and students.
Human-Centered Artificial Intelligence: Research and Applications presents current theories, fundamentals, techniques and diverse applications of human-centered AI. Sections address the question, "are AI models explainable, interpretable and understandable?, introduce readers to the design and development process, including mind perception and human interfaces, explore various applications of human-centered AI, including human-robot interaction, healthcare and decision-making, and more. As human-centered AI aims to push the boundaries of previously limited AI solutions to bridge the gap between machine and human, this book is an ideal update on the latest advances.
Anomaly Detection and Complex Event Processing over IoT Data Streams: With Application to eHealth and Patient Data Monitoring presents advanced processing techniques for IoT data streams and the anomaly detection algorithms over them. The book brings new advances and generalized techniques for processing IoT data streams, semantic data enrichment with contextual information at Edge, Fog and Cloud as well as complex event processing in IoT applications. The book comprises fundamental models, concepts and algorithms, architectures and technological solutions as well as their application to eHealth. Case studies, such as the bio-metric signals stream processing are presented -the massive amount of raw ECG signals from the sensors are processed dynamically across the data pipeline and classified with modern machine learning approaches including the Hierarchical Temporal Memory and Deep Learning algorithms. The book discusses adaptive solutions to IoT stream processing that can be extended to different use cases from different fields of eHealth, to enable a complex analysis of patient data in a historical, predictive and even prescriptive application scenarios. The book ends with a discussion on ethics, emerging research trends, issues and challenges of IoT data stream processing.
Artificial Intelligence for Healthcare Applications and Management introduces application domains of various AI algorithms across healthcare management. Instead of discussing AI first and then exploring its applications in healthcare afterward, the authors attack the problems in context directly, in order to accelerate the path of an interested reader toward building industrial-strength healthcare applications. Readers will be introduced to a wide spectrum of AI applications supporting all stages of patient flow in a healthcare facility. The authors explain how AI supports patients throughout a healthcare facility, including diagnosis and treatment recommendations needed to get patients from the point of admission to the point of discharge while maintaining quality, patient safety, and patient/provider satisfaction. AI methods are expected to decrease the burden on physicians, improve the quality of patient care, and decrease overall treatment costs. Current conditions affected by COVID-19 pose new challenges for healthcare management and learning how to apply AI will be important for a broad spectrum of students and mature professionals working in medical informatics. This book focuses on predictive analytics, health text processing, data aggregation, management of patients, and other fields which have all turned out to be bottlenecks for the efficient management of coronavirus patients.
As technology spreads globally, researchers and scientists continue to develop and study the strategy behind creating artificial life. This research field is ever expanding, and it is essential to stay current in the contemporary trends in artificial life, artificial intelligence, and machine learning. This an important topic for researchers and scientists in the field as well as industry leaders who may adapt this technology. The Handbook of Research on New Investigations in Artificial Life, AI, and Machine Learning provides concepts, theories, systems, technologies, and procedures that exhibit properties, phenomena, or abilities of any living system or human. This major reference work includes the most up-to-date research on techniques and technologies supporting AI and machine learning. Covering topics such as behavior classification, quality control, and smart medical devices, it serves as an essential resource for graduate students, academicians, stakeholders, practitioners, and researchers and scientists studying artificial life, cognition, AI, biological inspiration, machine learning, and more.
The application of artificial intelligence technology to 5G wireless communications is now appropriate to address the design of optimized physical layers, complicated decision-making, network management, and resource optimization tasks within networks. In exploring 5G wireless technologies and communication systems, artificial intelligence is a powerful tool and a research topic with numerous potential fields of application that require further study. Applications of Artificial Intelligence in Wireless Communication Systems explores the applications of artificial intelligence for the optimization of wireless communication systems, including channel models, channel state estimation, beamforming, codebook design, signal processing, and more. Covering key topics such as neural networks, deep learning, and wireless systems, this reference work is ideal for computer scientists, industry professionals, researchers, academicians, scholars, practitioners, instructors, and students.
Mobile Edge Artificial Intelligence: Opportunities and Challenges presents recent advances in wireless technologies and nonconvex optimization techniques for designing efficient edge AI systems. The book includes comprehensive coverage on modeling, algorithm design and theoretical analysis. Through typical examples, the powerfulness of this set of systems and algorithms is demonstrated, along with their abilities to make low-latency, reliable and private intelligent decisions at network edge. With the availability of massive datasets, high performance computing platforms, sophisticated algorithms and software toolkits, AI has achieved remarkable success in many application domains. As such, intelligent wireless networks will be designed to leverage advanced wireless communications and mobile computing technologies to support AI-enabled applications at various edge mobile devices with limited communication, computation, hardware and energy resources. |
![]() ![]() You may like...
Complex Systems - Relationships between…
Georgi M. Dimirovski
Hardcover
R4,571
Discovery Miles 45 710
Research Advancements in Smart…
Pandian Vasant, Gerhard Weber, …
Hardcover
R6,736
Discovery Miles 67 360
Evolving Trends in Kidney Cancer
Sashi S. Kommu, Inderbir S. Gill
Hardcover
R3,363
Discovery Miles 33 630
Difficult Cases in Endourology
Ahmed Al-Kandari, Mahesh Desai, …
Hardcover
R3,874
Discovery Miles 38 740
|