![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > Applications of computing > Artificial intelligence > General
Elgar Advanced Introductions are stimulating and thoughtful introductions to major fields in the social sciences, business and law, expertly written by the world's leading scholars. Designed to be accessible yet rigorous, they offer concise and lucid surveys of the substantive and policy issues associated with discrete subject areas. Providing a comprehensive overview of the current and future uses of Artificial Intelligence (AI) in healthcare, this Advanced Introduction discusses the issues surrounding the implementation, governance, impacts and risks of utilising AI in health organizations Key Features: Advises healthcare executives on how to effectively leverage AI to advance their strategies and plans and support digital transformation Discusses AI governance, change management, workforce management and the organization of AI experimentation and implementation Analyzes AI technologies in healthcare and their impacts on patient care, medical devices, pharmaceuticals, population health, and healthcare operations Provides risk mitigation approaches to address potential AI algorithm problems, liability and regulation Essential reading for policymakers, clinical executives and consultants in healthcare, this Advanced Introduction explores how to successfully integrate AI into healthcare organizations and will also prove invaluable to students and scholars interested in technological innovations in healthcare.
Security in IoT Social Networks takes a deep dive into security threats and risks, focusing on real-world social and financial effects. Mining and analyzing enormously vast networks is a vital part of exploiting Big Data. This book provides insight into the technological aspects of modeling, searching, and mining for corresponding research issues, as well as designing and analyzing models for resolving such challenges. The book will help start-ups grow, providing research directions concerning security mechanisms and protocols for social information networks. The book covers structural analysis of large social information networks, elucidating models and algorithms and their fundamental properties. Moreover, this book includes smart solutions based on artificial intelligence, machine learning, and deep learning for enhancing the performance of social information network security protocols and models. This book is a detailed reference for academicians, professionals, and young researchers. The wide range of topics provides extensive information and data for future research challenges in present-day social information networks.
Artificial Intelligence (AI) is being rapidly introduced into the workplace, creating debate around what AI means for our work and organizations. This book gives grounded counterweight to provocative newspaper headlines by using in-depth case studies of eight organizations' experiences of implementing and using AI, providing readers with a solid understanding of what is actually happening in practice. Critical yet constructive, the authors address the challenges of implementing AI: organizing for data, testing and validating, algorithmic brokering, and changing work. Using a combination of existing literature and thorough practical examples, they provide answers to questions such as: What data do I need? When is a system good enough to actually take over tasks? And how can my employees be prepared for working with AI? The book presents four recommendations for WISE management of AI, requiring work-related insights, interdisciplinary knowledge, sociotechnical change processes, and ethical awareness. Offering insight into the unique characteristics of AI in organizations, this book will be essential reading for scholars of business and management, data analytics and information systems, technology and innovation, and computer science. With practical recommendations for managing the challenges of AI, it will also provide business managers with reflections to improve their own AI development and implementation processes.
The successful deployment of AI solutions in manufacturing environments hinges on their security, safety and reliability which becomes more challenging in settings where multiple AI systems (e.g., industrial robots, robotic cells, Deep Neural Networks (DNNs)) interact as atomic systems and with humans. To guarantee the safe and reliable operation of AI systems in the shopfloor, there is a need to address many challenges in the scope of complex, heterogeneous, dynamic and unpredictable environments. Specifically, data reliability, human machine interaction, security, transparency and explainability challenges need to be addressed at the same time. Recent advances in AI research (e.g., in deep neural networks security and explainable AI (XAI) systems), coupled with novel research outcomes in the formal specification and verification of AI systems provide a sound basis for safe and reliable AI deployments in production lines. Moreover, the legal and regulatory dimension of safe and reliable AI solutions in production lines must be considered as well.To address some of the above listed challenges, fifteen European Organizations collaborate in the scope of the STAR project, a research initiative funded by the European Commission in the scope of its H2020 program (Grant Agreement Number: 956573). STAR researches, develops, and validates novel technologies that enable AI systems to acquire knowledge in order to take timely and safe decisions in dynamic and unpredictable environments. Moreover, the project researches and delivers approaches that enable AI systems to confront sophisticated adversaries and to remain robust against security attacks.This book is co-authored by the STAR consortium members and provides a review of technologies, techniques and systems for trusted, ethical, and secure AI in manufacturing. The different chapters of the book cover systems and technologies for industrial data reliability, responsible and transparent artificial intelligence systems, human centered manufacturing systems such as human-centred digital twins, cyber-defence in AI systems, simulated reality systems, human robot collaboration systems, as well as automated mobile robots for manufacturing environments. A variety of cutting-edge AI technologies are employed by these systems including deep neural networks, reinforcement learning systems, and explainable artificial intelligence systems. Furthermore, relevant standards and applicable regulations are discussed. Beyond reviewing state of the art standards and technologies, the book illustrates how the STAR research goes beyond the state of the art, towards enabling and showcasing human-centred technologies in production lines. Emphasis is put on dynamic human in the loop scenarios, where ethical, transparent, and trusted AI systems co-exist with human workers. The book is made available as an open access publication, which could make it broadly and freely available to the AI and smart manufacturing communities.
Ascend AI Processor Architecture and Programming: Principles and Applications of CANN offers in-depth AI applications using Huawei's Ascend chip, presenting and analyzing the unique performance and attributes of this processor. The title introduces the fundamental theory of AI, the software and hardware architecture of the Ascend AI processor, related tools and programming technology, and typical application cases. It demonstrates internal software and hardware design principles, system tools and programming techniques for the processor, laying out the elements of AI programming technology needed by researchers developing AI applications. Chapters cover the theoretical fundamentals of AI and deep learning, the state of the industry, including the current state of Neural Network Processors, deep learning frameworks, and a deep learning compilation framework, the hardware architecture of the Ascend AI processor, programming methods and practices for developing the processor, and finally, detailed case studies on data and algorithms for AI.
Quantum Inspired Computational Intelligence: Research and Applications explores the latest quantum computational intelligence approaches, initiatives, and applications in computing, engineering, science, and business. The book explores this emerging field of research that applies principles of quantum mechanics to develop more efficient and robust intelligent systems. Conventional computational intelligence-or soft computing-is conjoined with quantum computing to achieve this objective. The models covered can be applied to any endeavor which handles complex and meaningful information.
Unmanned Aerial Vehicle (UAV) has extended the freedom to operate and monitor the activities from remote locations. It has advantages of flying at low altitude, small size, high resolution, lightweight, and portability. UAV and artificial intelligence have started gaining attentions of academic and industrial research. UAV along with machine learning has immense scope in scientific research and has resulted in fast and reliable outputs. Deep learning-based UAV has helped in real time monitoring, data collection and processing, and prediction in the computer/wireless networks, smart cities, military, agriculture and mining. This book covers artificial techniques, pattern recognition, machine and deep learning - based methods and techniques applied to different real time applications of UAV. The main aim is to synthesize the scope and importance of machine learning and deep learning models in enhancing UAV capabilities, solutions to problems and numerous application areas. This book is ideal for researchers, scientists, engineers and designers in academia and industry working in the fields of computer science, computer vision, pattern recognition, machine learning, imaging, feature engineering, UAV and sensing.
Artificial Intelligence in Cancer: Diagnostic to Tailored Treatment provides theoretical concepts and practical techniques of AI and its applications in cancer management, building a roadmap on how to use AI in cancer at different stages of healthcare. It discusses topics such as the impactful role of AI during diagnosis and how it can support clinicians to make better decisions, AI tools to help pathologists identify exact types of cancer, how AI supports tumor profiling and can assist surgeons, and the gains in precision for oncologists using AI tools. Additionally, it provides information on AI used for survival and remission/recurrence analysis. The book is a valuable source for bioinformaticians, cancer researchers, oncologists, clinicians and members of the biomedical field who want to understand the promising field of AI applications in cancer management.
A Wall Street Journal Bestseller 'IT SHOULD BE READ BY ANYONE TRYING TO MAKE SENSE OF GEOPOLITICS TODAY' FINANCIAL TIMES Three of our most accomplished and deep thinkers come together to explore Artificial Intelligence (AI) and the way it is transforming human society - and what it means for us all. An AI learned to win chess by making moves human grand masters had never conceived. Another AI discovered a new antibiotic by analysing molecular properties human scientists did not understand. Now, AI-powered jets are defeating experienced human pilots in simulated dogfights. AI is coming online in searching, streaming, medicine, education, and many other fields and, in so doing, transforming how humans are experiencing reality. In The Age of AI, three leading thinkers have come together to consider how AI will change our relationships with knowledge, politics, and the societies in which we live. The Age of AI is an essential roadmap to our present and our future, an era unlike any that has come before.
Communication based on the internet of things (IoT) generates huge amounts of data from sensors over time, which opens a wide range of applications and areas for researchers. The application of analytics, machine learning, and deep learning techniques over such a large volume of data is a very challenging task. Therefore, it is essential to find patterns, retrieve novel insights, and predict future behavior using this large amount of sensory data. Artificial intelligence (AI) has an important role in facilitating analytics and learning in the IoT devices. Applying AI-Based IoT Systems to Simulation-Based Information Retrieval provides relevant frameworks and the latest empirical research findings in the area. It is ideal for professionals who wish to improve their understanding of the strategic role of trust at different levels of the information and knowledge society and trust at the levels of the global economy, networks and organizations, teams and work groups, information systems, and individuals as actors in the networked environments. Covering topics such as blockchain visualization, computer-aided drug discovery, and health monitoring, this premier reference source is an excellent resource for business leaders and executives, IT managers, security professionals, data scientists, students and faculty of higher education, librarians, hospital administrators, researchers, and academicians.
It is crucial that forensic science meets challenges such as identifying hidden patterns in data, validating results for accuracy, and understanding varying criminal activities in order to be authoritative so as to hold up justice and public safety. Artificial intelligence, with its potential subsets of machine learning and deep learning, has the potential to transform the domain of forensic science by handling diverse data, recognizing patterns, and analyzing, interpreting, and presenting results. Machine Learning and deep learning frameworks, with developed mathematical and computational tools, facilitate the investigators to provide reliable results. Further study on the potential uses of these technologies is required to better understand their benefits. Aiding Forensic Investigation Through Deep Learning and Machine Learning Frameworks provides an outline of deep learning and machine learning frameworks and methods for use in forensic science to produce accurate and reliable results to aid investigation processes. The book also considers the challenges, developments, advancements, and emerging approaches of deep learning and machine learning. Covering key topics such as biometrics, augmented reality, and fraud investigation, this reference work is crucial for forensic scientists, law enforcement, computer scientists, researchers, scholars, academicians, practitioners, instructors, and students.
Due to the growing prevalence of artificial intelligence technologies, schools, museums, and art galleries will need to change traditional ways of working and conventional thought processes to fully embrace their potential. Integrating virtual and augmented reality technologies and wearable devices into these fields can promote higher engagement in an increasingly digital world. Virtual and Augmented Reality in Education, Art, and Museums is an essential research book that explores the strategic role and use of virtual and augmented reality in shaping visitor experiences at art galleries and museums and their ability to enhance education. Highlighting a range of topics such as online learning, digital heritage, and gaming, this book is ideal for museum directors, tour developers, educational software designers, 3D artists, designers, curators, preservationists, conservationists, education coordinators, academicians, researchers, and students.
There is no doubt that there has been much excitement regarding the pioneering contributions of artificial intelligence (AI), the internet of things (IoT), and blockchain technologies and tools in visualizing and realizing smarter as well as sophisticated systems and services. However, researchers are being bombarded with various machine and deep learning algorithms, which are categorized as a part and parcel of the enigmatic AI discipline. The knowledge discovered gets disseminated to actuators and other concerned systems in order to empower them to intelligently plan and insightfully execute appropriate tasks with clarity and confidence. The IoT processes in conjunction with the AI algorithms and blockchain technology are bound to lay out a stimulating foundation for producing and sustaining smarter systems for society. The Handbook of Research on Smarter and Secure Industrial Applications Using AI, IoT, and Blockchain Technology articulates and accentuates various AI algorithms, fresh innovations in the IoT, and blockchain spaces. The domain of transforming raw data to information and to relevant knowledge is gaining prominence with the availability of data ingestion, processing, mining, analytics algorithms, platforms, frameworks, and other accelerators. Covering topics such as blockchain applications, Industry 4.0, and cryptography, this book serves as a comprehensive guide for AI researchers, faculty members, IT professionals, academicians, students, researchers, and industry professionals.
Artificial intelligence (AI) and knowledge management can create innovative digital solutions and business opportunities in Asia from circular and green economies to technological disruption, innovation, and smart cities. It is essential to understand the impact and importance of AI and knowledge management within the digital economy for future development and for fostering the best practices within 21st century businesses. The Handbook of Research on Artificial Intelligence and Knowledge Management in Asia's Digital Economy offers conceptual frameworks, empirical studies, and case studies that help to understand the latest developments in artificial intelligence and knowledge management, as well as its potential for digital transformation and business opportunities in Asia. Covering topics such as augmented reality. Convolutional neural networks, and digital transformation, this major reference work generates enriching debate on the challenges and opportunities for economic growth and inclusion in the region among business executives and leaders, IT managers, policymakers, government officials, students and educators of higher education, researchers, and academicians.
Most technologies have been harnessed to enable educators to conduct their business remotely. However, the social context of technology as a mediating factor needs to be examined to address the perceptions of barriers to learning due to the lack of social interaction between a teacher and a learner in such a setting. Developing Technology Mediation in Learning Environments is an essential reference source that widens the scene of STEM education with an all-encompassing approach to technology-mediated learning, establishing a context for technology as a mediating factor in education. Featuring research on topics such as distance education, digital storytelling, and mobile learning, this book is ideally designed for teachers, IT consultants, educational software developers, researchers, administrators, and professionals seeking coverage on developing digital skills and professional knowledge using technology.
Over the last two decades, researchers are looking at imbalanced data learning as a prominent research area. Many critical real-world application areas like finance, health, network, news, online advertisement, social network media, and weather have imbalanced data, which emphasizes the research necessity for real-time implications of precise fraud/defaulter detection, rare disease/reaction prediction, network intrusion detection, fake news detection, fraud advertisement detection, cyber bullying identification, disaster events prediction, and more. Machine learning algorithms are based on the heuristic of equally-distributed balanced data and provide the biased result towards the majority data class, which is not acceptable considering imbalanced data is omnipresent in real-life scenarios and is forcing us to learn from imbalanced data for foolproof application design. Imbalanced data is multifaceted and demands a new perception using the novelty at sampling approach of data preprocessing, an active learning approach, and a cost perceptive approach to resolve data imbalance. The Handbook of Research on Data Preprocessing, Active Learning, and Cost Perceptive Approaches for Resolving Data Imbalance offers new aspects for imbalanced data learning by providing the advancements of the traditional methods, with respect to big data, through case studies and research from experts in academia, engineering, and industry. The chapters provide theoretical frameworks and the latest empirical research findings that help to improve the understanding of the impact of imbalanced data and its resolving techniques based on data preprocessing, active learning, and cost perceptive approaches. This book is ideal for data scientists, data analysts, engineers, practitioners, researchers, academicians, and students looking for more information on imbalanced data characteristics and solutions using varied approaches.
Artificial intelligence serves as a catalyst for transformation in the field of education. This shift in the educational paradigm has a profound impact on the way we live, interact with each other, and define our values. Thus, there is a need for an earnest inquiry into the cultural repercussions of this phenomenon that extends beyond superficial analyses of AI-based applications in education. Cultural and Social Implications of Artificial Intelligence in Education addresses the need for a scholarly exploration of the cultural and social impacts of the rapid expansion of artificial intelligence in the field of education including potential consequences these impacts could have on culture, social relations, and values. The content within this publication covers such topics as ethics, critical thinking, and augmented intelligence and is designed for educators, academicians, administrators, researchers, and professionals.
The clinical use of Artificial Intelligence (AI) in radiation oncology is in its infancy. However, it is certain that AI is capable of making radiation oncology more precise and personalized with improved outcomes. Radiation oncology deploys an array of state-of-the-art technologies for imaging, treatment, planning, simulation, targeting, and quality assurance while managing the massive amount of data involving therapists, dosimetrists, physicists, nurses, technologists, and managers. AI consists of many powerful tools which can process a huge amount of inter-related data to improve accuracy, productivity, and automation in complex operations such as radiation oncology.This book offers an array of AI scientific concepts, and AI technology tools with selected examples of current applications to serve as a one-stop AI resource for the radiation oncology community. The clinical adoption, beyond research, will require ethical considerations and a framework for an overall assessment of AI as a set of powerful tools.30 renowned experts contributed to sixteen chapters organized into six sections: Define the Future, Strategy, AI Tools, AI Applications, and Assessment and Outcomes. The future is defined from a clinical and a technical perspective and the strategy discusses lessons learned from radiology experience in AI and the role of open access data to enhance the performance of AI tools. The AI tools include radiomics, segmentation, knowledge representation, and natural language processing. The AI applications discuss knowledge-based treatment planning and automation, AI-based treatment planning, prediction of radiotherapy toxicity, radiomics in cancer prognostication and treatment response, and the use of AI for mitigation of error propagation. The sixth section elucidates two critical issues in the clinical adoption: ethical issues and the evaluation of AI as a transformative technology. |
![]() ![]() You may like...
Technology, Users and Uses - Ethics and…
Joan Casas-Roma
Hardcover
Artificial Intelligence for Neurological…
Ajith Abraham, Sujata Dash, …
Paperback
R4,069
Discovery Miles 40 690
Artificial Intelligence for Future…
Rabindra Nath Shaw, Ankush Ghosh, …
Paperback
R4,005
Discovery Miles 40 050
Artificial Intelligence of Things for…
Rajeev Kumar Gupta, Arti Jain, …
Hardcover
R7,386
Discovery Miles 73 860
|