![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > Applications of computing > Artificial intelligence > General
This unique work introduces the basic principles of artificial intelligence with applications in geographical teaching and research, GIS, and planning. Written in an accessible, non-technical and witty style, this book marks the beginning of the Al revolution in geography with major implications for teaching and research. The authors provide an easy to understand basic introduction to Al relevant to geography. There are no special mathematical and statistical skills needed, indeed these might well be a hindrance. Al is a different way of looking at the world and it requires a willingness to experiment, and readers who are unhindered by the baggage of obsolete technologies and outmoded philosophies of science will probably do best. The text provides an introduction to expert systems, neural nets, genetic algorithms, smart systems and artificial life and shows how they are likely to transform geographical enquiry.
This book introduces readers to the latest exciting advances in human motion sensing and recognition, from the theoretical development of fuzzy approaches to their applications. The topics covered include human motion recognition in 2D and 3D, hand motion analysis with contact sensors, and vision-based view-invariant motion recognition, especially from the perspective of Fuzzy Qualitative techniques. With the rapid development of technologies in microelectronics, computers, networks, and robotics over the last decade, increasing attention has been focused on human motion sensing and recognition in many emerging and active disciplines where human motions need to be automatically tracked, analyzed or understood, such as smart surveillance, intelligent human-computer interaction, robot motion learning, and interactive gaming. Current challenges mainly stem from the dynamic environment, data multi-modality, uncertain sensory information, and real-time issues. These techniques are shown to effectively address the above challenges by bridging the gap between symbolic cognitive functions and numerical sensing & control tasks in intelligent systems. The book not only serves as a valuable reference source for researchers and professionals in the fields of computer vision and robotics, but will also benefit practitioners and graduates/postgraduates seeking advanced information on fuzzy techniques and their applications in motion analysis.
This book provides an overview of current issues and challenges in the fashion industry and an update on data-driven artificial intelligence (AI) techniques and their potential implementation in response to those challenges. Each chapter starts off with an example of a data-driven AI technique on a particular sector of the fashion industry (design, manufacturing, supply or retailing), before moving on to illustrate its implementation in a real-world application
This volume contains the proceedings of the 5th International Conference on Frontier Computing (FC 2016), Tokyo, Japan, July 13-15, 2016. This international meeting provided a forum for researchers to share current understanding of recent advances and emergence in information technology, science, and engineering, with themes in the scope of Communication Networks, Business Intelligence and Knowledge Management, Web Intelligence, and any related fields that further the development of information technology. The articles presented cover a wide spectrum of topics: database and data mining, networking and communications, web and internet of things, embedded system, soft computing, social network analysis, security and privacy, optics communication, and ubiquitous/pervasive computing. Many papers report results of great academic potential and value, and in addition, indicate promising directions of research in the focused realm of this conference series. Readers, including students, academic researchers, and professionals, will benefit from the results presented in this book. It also provides an overview of current research and can be used as a guidebook for those new to the field.
By presenting the latest advances in fuzzy sets and computing with words from around the globe, this book disseminates recent innovations in advanced intelligent technologies and systems. From intelligent control and intuitionistic fuzzy quantifiers to various data science and industrial applications, it includes a wide range of valuable lessons learned and ideas for future intelligent products and systems.
This book offers a timely reflection on the remarkable range of algorithms and applications that have made the area of deep learning so attractive and heavily researched today. Introducing the diversity of learning mechanisms in the environment of big data, and presenting authoritative studies in fields such as sensor design, health care, autonomous driving, industrial control and wireless communication, it enables readers to gain a practical understanding of design. The book also discusses systematic design procedures, optimization techniques, and validation processes.
The book includes both invited and contributed chapters dealing with advanced methods and theoretical development for the analysis of social networks and applications in numerous disciplines. Some authors explore new trends related to network measures, multilevel networks and clustering on networks, while other contributions deepen the relationship among statistical methods for data mining and social network analysis. Along with the new methodological developments, the book offers interesting applications to a wide set of fields, ranging from the organizational and economic studies, collaboration and innovation, to the less usual field of poetry. In addition, the case studies are related to local context, showing how the substantive reasoning is fundamental in social network analysis. The list of authors includes both top scholars in the field of social networks and promising young researchers. All chapters passed a double blind review process followed by the guest editors. This edited volume will appeal to students, researchers and professionals.
This book provides methodologies for designing and implementing guidance algorithms for autonomous vehicles. These algorithms make important decision regarding how to steer and drive a ground vehicle in order to safely stay on an intended path, thereby making the vehicle driverless. The design tools provided in this book enable the reader to develop highly practical and real-world implementable guidance algorithms that will deliver high-accuracy driving for field vehicles. (They are equally applicable for on-road vehicles.) The book covers a variety of vehicle types, including wheeled vehicles, tracked vehicles, wheeled and tracked vehicles towing trailers, and four-wheel-steer and four-wheel-drive vehicles. It also covers active trailers that are driven and steered. Vehicles used in agriculture, mining and road construction are subjected to unpredictable and significant disturbances. The robust control methodologies presented can successfully compensate for these disturbances, as confirmed by the experimental results presented. Though the majority of the methodologies presented are based on sliding-mode controllers, other robust control methodologies are also discussed. To help the reader decide which controller is best suited for his/her choice of vehicle, experimental results are presented in a comparative format.
This book describes load modeling approaches for complex work pieces and batch forgings, and demonstrates analytical modeling and data-driven modeling approaches for known and unknown complex forging processes. It overcomes the current shortcomings of modeling, analysis and control approaches, presenting contributions in three major areas: In the first, several novel modeling approaches are proposed: a process/shape-decomposition modeling method to help estimate the deformation force; an online probabilistic learning machine for the modeling of batch forging processes; and several data-driven identification and modeling approaches for unknown forging processes under different work conditions. The second area develops model-based dynamic analysis methods to derive the conditions of stability and creep. Lastly, several novel intelligent control methods are proposed for complex forging processes. One of the most serious problems in forging forming involves the inaccurate forging conditions, velocity and position offered by the hydraulic actuator due to the complexity of both the deformation process of the metal work piece and the motion process of the hydraulic actuator. The book summarizes the current weaknesses of modeling, analysis and control approaches. are summarized as follows: a) With the current modeling approaches it is difficult to model complex forging processes with unknown parameters, as they only model the dynamics in local working areas but do not effectively model unknown nonlinear systems across multiple working areas; further, they do not take the batch forging process into account, let alone its distribution modeling. b) All previous dynamic analysis studies simplify the forging system to having a single-frequency pressure fluctuation and neglect the influences of non-linear load force. Further, they fail to take the flow equation in both valves and cylinders into account. c) Conventional control approaches only consider the linear deformation force and pay no attention to sudden changes and the motion synchronization for the multi-cylinder system, making them less effective for complex, nonlinear time-varying forging processes subject to sudden changes.
This book reviews IoT-centric vulnerabilities from a multidimensional perspective by elaborating on IoT attack vectors, their impacts on well-known security objectives, attacks which exploit such vulnerabilities, coupled with their corresponding remediation methodologies. This book further highlights the severity of the IoT problem at large, through disclosing incidents of Internet-scale IoT exploitations, while putting forward a preliminary prototype and associated results to aid in the IoT mitigation objective. Moreover, this book summarizes and discloses findings, inferences, and open challenges to inspire future research addressing theoretical and empirical aspects related to the imperative topic of IoT security. At least 20 billion devices will be connected to the Internet in the next few years. Many of these devices transmit critical and sensitive system and personal data in real-time. Collectively known as "the Internet of Things" (IoT), this market represents a $267 billion per year industry. As valuable as this market is, security spending on the sector barely breaks 1%. Indeed, while IoT vendors continue to push more IoT devices to market, the security of these devices has often fallen in priority, making them easier to exploit. This drastically threatens the privacy of the consumers and the safety of mission-critical systems. This book is intended for cybersecurity researchers and advanced-level students in computer science. Developers and operators working in this field, who are eager to comprehend the vulnerabilities of the Internet of Things (IoT) paradigm and understand the severity of accompanied security issues will also be interested in this book.
Electric vehicles are changing transportation dramatically and this unique book merges the many disciplines that contribute research to make EV possible, so the reader is informed about all the underlying science and technologies driving the change. An emission-free mobility system is the only way to save the world from the greenhouse effect and other ecological issues. This belief has led to a tremendous growth in the demand for electric vehicles (EV) and hybrid electric vehicles (HEV), which are predicted to have a promising future based on the goals fixed by the European Commission's Horizon 2020 program. This book brings together the research that has been carried out in the EV/HEV sector and the leading role of advanced optimization techniques with artificial intelligence (AI). This is achieved by compiling the findings of various studies in the electrical, electronics, computer, and mechanical domains for the EV/HEV system. In addition to acting as a hub for information on these research findings, the book also addresses the challenges in the EV/HEV sector and provides proven solutions that involve the most promising AI techniques. Since the commercialization of EVs/HEVs still remains a challenge in industries in terms of performance and cost, these are the two tradeoffs which need to be researched in order to arrive at an optimal solution. Therefore, this book focuses on the convergence of various technologies involved in EVs/HEVs. Since all countries will gradually shift from conventional internal combustion (IC) engine-based vehicles to EVs/HEVs in the near future, it also serves as a useful reliable resource for multidisciplinary researchers and industry teams.
This book offers a self-contained guide to the theory and main applications of soft sets. It introduces readers to the basic concepts, the algebraic and topological structures, as well as hybrid structures, such as fuzzy soft sets and intuitionistic fuzzy sets. The last part of the book explores a range of interesting applications in the fields of decision-making, pattern recognition, and data science. All in all, the book provides graduate students and researchers in mathematics and various applied science fields with a comprehensive and timely reference guide to soft sets.
This book reports innovative deep learning and big data analytics technologies for smart manufacturing applications. In this book, theoretical foundations, as well as the state-of-the-art and practical implementations for the relevant technologies, are covered. This book details the relevant applied research conducted by the authors in some important manufacturing applications, including intelligent prognosis on manufacturing processes, sustainable manufacturing and human-robot cooperation. Industrial case studies included in this book illustrate the design details of the algorithms and methodologies for the applications, in a bid to provide useful references to readers. Smart manufacturing aims to take advantage of advanced information and artificial intelligent technologies to enable flexibility in physical manufacturing processes to address increasingly dynamic markets. In recent years, the development of innovative deep learning and big data analytics algorithms is dramatic. Meanwhile, the algorithms and technologies have been widely applied to facilitate various manufacturing applications. It is essential to make a timely update on this subject considering its importance and rapid progress. This book offers a valuable resource for researchers in the smart manufacturing communities, as well as practicing engineers and decision makers in industry and all those interested in smart manufacturing and Industry 4.0.
This monograph presents new algorithms for formation control of multi-agent systems (MAS) based on principles of continuum mechanics. Beginning with an overview of traditional methods, the author then introduces an innovative new approach whereby agents of an MAS are considered as particles in a continuum evolving in n whose desired configuration is required to satisfy an admissible deformation function. The necessary theory and its validation on a mobile-agent-based swarm test bed are considered for two primary tasks: homogeneous transformation of the MAS and deployment of a random distribution of agents on a desired configuration. The framework for this model is based on homogeneous transformations for the evolution of an MAS under no inter-agent communication, local inter-agent communication, and intelligent perception by agents. Different communication protocols for MAS evolution, the robustness of tracking of a desired motion by an MAS evolving in n, and the effect of communication delays in an MAS evolving under consensus algorithms or homogeneous maps are also explored. Featuring appendices which introduce the requisite concepts from continuum kinematics and graph theory, this monograph will provide advanced graduate students and researchers with the necessary background to understand and apply the methods presented.
In this revolutionary work, the author sets the stage for the
science of In the field of
This book highlights cutting-edge research in the field of network science, offering scientists, researchers, students and practitioners a unique update on the latest advances in theory and a multitude of applications. It presents the peer-reviewed proceedings of the IX International Conference on Complex Networks and their Applications (COMPLEX NETWORKS 2020). The carefully selected papers cover a wide range of theoretical topics such as network models and measures; community structure, network dynamics; diffusion, epidemics and spreading processes; resilience and control as well as all the main network applications, including social and political networks; networks in finance and economics; biological and neuroscience networks and technological networks.
This book presents the latest research of the field of optimization, modeling and algorithms, discussing the real-world application problems associated with new innovative methodologies. The requirements and demands of problem solving have been increasing exponentially and new computer science and engineering technologies have reduced the scope of data coverage worldwide. The recent advances in information communication technology (ICT) have contributed to reducing the gaps in the coverage of domains around the globe. The book is a valuable reference work for researchers in the fields of computer science and engineering with a particular focus on modeling, simulation and optimization as well as for postgraduates, managers, economists and decision makers
This book presents recent research in the field of interaction between computational intelligence and mathematics, ranging from theory to applications. Computational intelligence, or soft computing consists of various bio-inspired methods, especially fuzzy systems, artificial neural networks, evolutionary and memetic algorithms. These research areas were initiated by professionals in various applied fields, such as engineers, economists, and financial and medical experts. Although computational intelligence offered solutions (at least quasi-optimal solutions) for problems with high complexity, vague and undeterministic features, initially little attention was paid to the mathematical models and analysis of the methods successfully applied. A typical example is the extremely successful Mamdani-algorithm, and its modifications and extensions, applied since the mid-1970s, where the first analysis of the simplest cases, showing why this algorithm was so efficient and stable, was not given until the early 1990s. Since the mid-2000s, the authors have organized international conferences annually to focus on the mathematical methodological issues in connection with computational intelligence approaches. These conferences have attracted a large number of submissions with a wide scope of topics and quality. The editors selected several high-quality papers and approached the authors to submit an essentially extended and improved book chapter based on the lectures.This volume is the first contributed book on the subject.
This book presents a compilation of the most recent implementation of artificial intelligence methods for solving different problems generated by the COVID-19. The problems addressed came from different fields and not only from medicine. The information contained in the book explores different areas of machine and deep learning, advanced image processing, computational intelligence, IoT, robotics and automation, optimization, mathematical modeling, neural networks, information technology, big data, data processing, data mining, and likewise. Moreover, the chapters include the theory and methodologies used to provide an overview of applying these tools to the useful contribution to help to face the emerging disaster. The book is primarily intended for researchers, decision makers, practitioners, and readers interested in these subject matters. The book is useful also as rich case studies and project proposals for postgraduate courses in those specializations.
This book offers a new perspective and deeper understanding of complex socioeconomic systems, and explores the laws and mechanisms of erring by revealing the system structure, i.e., the context in which errors are imbedded. It proposes a number of new concepts for the field of systems science concerning the forces affecting e.g. system structure, subsystem structures, and system elements. Given its scope, it offers an excellent reference book for researchers and other readers in the fields of systems science, management science, mathematics, fuzzy logic and sets, symbolic logic, philosophy, etc. The book can also benefit researchers and practitioners in artificial intelligence and machine learning, as various erring patterns can be identified by training intelligent machines with big data (i.e., error cases and their logic), helping to prevent or eliminate errors in a cost-effective manner.
This book is a specialized monograph on interpolation and definability, a notion central in pure logic and with significant meaning and applicability in all areas where logic is applied, especially computer science, artificial intelligence, logic programming, philosophy of science and natural language. Suitable for researchers and graduate students in mathematics, computer science and philosophy, this is the latest in the prestigous world-renowned Oxford Logic Guides, which contains Michael Dummet's Elements of intuitionism (second edition), J. M. Dunn and G. Hardegree's Algebraic Methods in Philosophical Logic, H. Rott's Change, Choice and Inference: A Study of Belief Revision and Nonmonotonic Reasoning, P. T. Johnstone's Sketches of an Elephant: A Topos Theory Compendium: Volumes 1 and 2, and David J. Pym and Eike Ritter's Reductive Logic and Proof Search: Proof theory, semantics and control.
This book is a survey and analysis of how deep learning can be used to generate musical content. The authors offer a comprehensive presentation of the foundations of deep learning techniques for music generation. They also develop a conceptual framework used to classify and analyze various types of architecture, encoding models, generation strategies, and ways to control the generation. The five dimensions of this framework are: objective (the kind of musical content to be generated, e.g., melody, accompaniment); representation (the musical elements to be considered and how to encode them, e.g., chord, silence, piano roll, one-hot encoding); architecture (the structure organizing neurons, their connexions, and the flow of their activations, e.g., feedforward, recurrent, variational autoencoder); challenge (the desired properties and issues, e.g., variability, incrementality, adaptability); and strategy (the way to model and control the process of generation, e.g., single-step feedforward, iterative feedforward, decoder feedforward, sampling). To illustrate the possible design decisions and to allow comparison and correlation analysis they analyze and classify more than 40 systems, and they discuss important open challenges such as interactivity, originality, and structure. The authors have extensive knowledge and experience in all related research, technical, performance, and business aspects. The book is suitable for students, practitioners, and researchers in the artificial intelligence, machine learning, and music creation domains. The reader does not require any prior knowledge about artificial neural networks, deep learning, or computer music. The text is fully supported with a comprehensive table of acronyms, bibliography, glossary, and index, and supplementary material is available from the authors' website.
This unique book succinctly summarizes the need to measure how ontologies (one of the building blocks of the Semantic Web) are currently being utilized, providing insights for various stakeholders. Where possible it improves and reuses terms in existing vocabularies/ontologies, as recommended by the Linked Data community. Recent advances in the Semantic Web have led to a proliferation of Resource Description Framework (RDF) data, which employ ontologies to semantically describe the information on the Web making it equally understandable for both humans and machines. However, to create a network effect, it is important that selective ontologies are used by more data publishers to improve the value of that ontology. For this to happen, it is vital to discover what is being used from an ontology to semantically annotate the information on the Web specific to a given domain. Answers to such basic but crucial questions can only be achieved by ascertaining how ontologies in the current semantic web are being utilized and adopted. The proposed frameworks to obtain such insights are explained with real-world examples to provide a clear and detailed description of ontology usage analysis. Both theoretical and practical, the book is of value to academics and professionals working in industry. Specifically, it is of primary interest to researchers, graduate students and practitioners in the area of the Semantic Web and its various real-world applications.
This book provides a general and comprehensible overview of imbalanced learning. It contains a formal description of a problem, and focuses on its main features, and the most relevant proposed solutions. Additionally, it considers the different scenarios in Data Science for which the imbalanced classification can create a real challenge. This book stresses the gap with standard classification tasks by reviewing the case studies and ad-hoc performance metrics that are applied in this area. It also covers the different approaches that have been traditionally applied to address the binary skewed class distribution. Specifically, it reviews cost-sensitive learning, data-level preprocessing methods and algorithm-level solutions, taking also into account those ensemble-learning solutions that embed any of the former alternatives. Furthermore, it focuses on the extension of the problem for multi-class problems, where the former classical methods are no longer to be applied in a straightforward way. This book also focuses on the data intrinsic characteristics that are the main causes which, added to the uneven class distribution, truly hinders the performance of classification algorithms in this scenario. Then, some notes on data reduction are provided in order to understand the advantages related to the use of this type of approaches. Finally this book introduces some novel areas of study that are gathering a deeper attention on the imbalanced data issue. Specifically, it considers the classification of data streams, non-classical classification problems, and the scalability related to Big Data. Examples of software libraries and modules to address imbalanced classification are provided. This book is highly suitable for technical professionals, senior undergraduate and graduate students in the areas of data science, computer science and engineering. It will also be useful for scientists and researchers to gain insight on the current developments in this area of study, as well as future research directions.
This scholarly treasury of over 450 distinguished quotations, divided into 170 categories, focuses on the best thinking in the disciplines of psychology, philosophy, and artificial intelligence, from the classical period of Greece to contemporary cognitive science. Quotations are arranged chronologically within categories. This work will be of interest to scholars and professionals in psychology, artificial intelligence, and cognitive science as well as undergraduate and graduate students in these disciplines. |
![]() ![]() You may like...
Dynamic and Seamless Integration of…
Eberhard Abele, Manfred Boltze, …
Hardcover
Neurobiology Of Learning And Memory
James L. McGaugh, Steven Rose, …
Hardcover
R8,348
Discovery Miles 83 480
A Practical Guide to Teaching Foreign…
Norbert Pachler, Ana Redondo
Paperback
R1,390
Discovery Miles 13 900
|