![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > Applications of computing > Image processing > General
This book presents a comprehensive treatise on Riemannian geometric computations and related statistical inferences in several computer vision problems. This edited volume includes chapter contributions from leading figures in the field of computer vision who are applying Riemannian geometric approaches in problems such as face recognition, activity recognition, object detection, biomedical image analysis, and structure-from-motion. Some of the mathematical entities that necessitate a geometric analysis include rotation matrices (e.g. in modeling camera motion), stick figures (e.g. for activity recognition), subspace comparisons (e.g. in face recognition), symmetric positive-definite matrices (e.g. in diffusion tensor imaging), and function-spaces (e.g. in studying shapes of closed contours).
This book presents and develops new reinforcement learning methods that enable fast and robust learning on robots in real-time. Robots have the potential to solve many problems in society, because of their ability to work in dangerous places doing necessary jobs that no one wants or is able to do. One barrier to their widespread deployment is that they are mainly limited to tasks where it is possible to hand-program behaviors for every situation that may be encountered. For robots to meet their potential, they need methods that enable them to learn and adapt to novel situations that they were not programmed for. Reinforcement learning (RL) is a paradigm for learning sequential decision making processes and could solve the problems of learning and adaptation on robots. This book identifies four key challenges that must be addressed for an RL algorithm to be practical for robotic control tasks. These RL for Robotics Challenges are: 1) it must learn in very few samples; 2) it must learn in domains with continuous state features; 3) it must handle sensor and/or actuator delays; and 4) it should continually select actions in real time. This book focuses on addressing all four of these challenges. In particular, this book is focused on time-constrained domains where the first challenge is critically important. In these domains, the agent's lifetime is not long enough for it to explore the domains thoroughly, and it must learn in very few samples.
Based on more than 10 years of teaching experience, Blanken and his coeditors have assembled all the topics that should be covered in advanced undergraduate or graduate courses on multimedia retrieval and multimedia databases. The single chapters of this textbook explain the general architecture of multimedia information retrieval systems and cover various metadata languages such as Dublin Core, RDF, or MPEG. The authors emphasize high-level features and show how these are used in mathematical models to support the retrieval process. For each chapter, there 's detail on further reading, and additional exercises and teaching material is available online.
The creation and consumption of content, especially visual content, is ingrained into our modern world. This book contains a collection of texts centered on the evaluation of image retrieval systems. To enable reproducible evaluation we must create standardized benchmarks and evaluation methodologies. The individual chapters in this book highlight major issues and challenges in evaluating image retrieval systems and describe various initiatives that provide researchers with the necessary evaluation resources. In particular they describe activities within ImageCLEF, an initiative to evaluate cross-language image retrieval systems which has been running as part of the Cross Language Evaluation Forum (CLEF) since 2003. To this end, the editors collected contributions from a range of people: those involved directly with ImageCLEF, such as the organizers of specific image retrieval or annotation tasks; participants who have developed techniques to tackle the challenges set forth by the organizers; and people from industry and academia involved with image retrieval and evaluation generally. Mostly written for researchers in academia and industry, the book stresses the importance of combing textual and visual information - a multimodal approach - for effective retrieval. It provides the reader with clear ideas about information retrieval and its evaluation in contexts and domains such as healthcare, robot vision, press photography, and the Web.
This book will address the advances, applications, research results, and emerging areas of optics, photonics, computational approaches, nano-photonics, bio-photonics, with applications in information systems. The objectives are to bring together novel approaches, analysis, models, and technologies that enhance sensing, measurement, processing, interpretation, and visualization of information. The book will concentrate on new approaches to information systems, including integration of computational algorithms, bio-inspired models, photonics technologies, information security, bio-photonics, and nano-photonics. Applications include bio-photonics, digitally enhanced sensing and imaging systems, multi-dimensional optical imaging and image processing, bio-inspired imaging, 3D visualization, 3D displays, imaging on nano-scale, quantum optics, super resolution imaging, photonics for biological applications, microscopy, information optics, and holographic information systems.
This is the first book which informs about recent progress in biomechanics, computer vision and computer graphics - all in one volume. Researchers from these areas have contributed to this book to promote the establishment of human motion research as a multi-facetted discipline and to improve the exchange of ideas and concepts between these three areas. The book combines carefully written reviews with detailed reports on recent progress in research.
This book covers up-to-date methods and algorithms for the automated analysis of engineering drawings and digital cartographic maps. The Non-Deterministic Agent System (NDAS) offers a parallel computational approach to such image analysis. The book describes techniques suitable for persistent and explicit knowledge representation for engineering drawings and digital maps. It also highlights more specific techniques, e.g., applying robot navigation and mapping methods to this problem. Also included are more detailed accounts of the use of unsupervised segmentation algorithms to map images. Finally, all these threads are woven together in two related systems: NDAS and AMAM (Automatic Map Analysis Module).
Designed for information systems professionals, including IS, DP, MIS, LAN, and systems managers, this text provides a source of introductory information for those involved with decision-making processes related to information systems. Suitable as a University course text in MIS programs, the book also covers the subject in sufficient detail for the more technically orientated. This text describes how to reap the benefits of improved efficiency and productivity through the use of document imaging systems that reduce access time and enhance document integrity.
While women maintain an increased visibility in the games culture, the issues involving gender in computing gaming is still relevant; and it is evident that the industry could benefit from the involvement of women in all aspects from consumer to developer. Gender Divide and the Computer Game Industry takes a look at the games industry from a gendered perspective and highlights the variety of ways in which women remain underrepresented in this industry. This reference source provides a comprehensive overview on the issue of gender, computer games, and the ICT sector. It supplies students and academics in numerous disciplines with the concerns of the computer games industry, male dominated occupations, and the complexity of gender in the workforce.
Through a series of step-by-step tutorials and numerous hands-on exercises, this book aims to equip the reader with both a good understanding of the importance of space in the abstract world of engineers and the ability to create a model of a product in virtual space - a skill essential for any designer or engineer who needs to present ideas concerning a particular product within a professional environment. The exercises progress logically from the simple to the more complex; while Solid Works or NX is the software used, the underlying philosophy is applicable to all modeling software. In each case, the explanation covers the entire procedure from the basic idea and production capabilities through to the real model; the conversion from 3D model to 2D manufacturing drawing is also clearly explained. Topics covered include modeling of prism, axisymmetric, symmetric and sophisticated shapes; digitization of physical models using modeling software; creation of a CAD model starting from a physical model; free form surface modeling; modeling of product assemblies following bottom-up and top-down principles; and the presentation of a product in accordance with the rules of technical documentation. This book, which includes more than 500 figures, will be ideal for students wishing to gain a sound grasp of space modeling techniques. Academics and professionals will find it to be an excellent teaching and research aid, and an easy-to-use guide.
This book introduces time-stretch quantitative phase imaging (TS-QPI), a high-throughput label-free imaging flow cytometer developed for big data acquisition and analysis in phenotypic screening. TS-QPI is able to capture quantitative optical phase and intensity images simultaneously, enabling high-content cell analysis, cancer diagnostics, personalized genomics, and drug development. The authors also demonstrate a complete machine learning pipeline that performs optical phase measurement, image processing, feature extraction, and classification, enabling high-throughput quantitative imaging that achieves record high accuracy in label -free cellular phenotypic screening and opens up a new path to data-driven diagnosis.
This book collects the state-of-art and new trends in image analysis and biomechanics. It covers a wide field of scientific and cultural topics, ranging from remodeling of bone tissue under the mechanical stimulus up to optimizing the performance of sports equipment, through the patient-specific modeling in orthopedics, microtomography and its application in oral and implant research, computational modeling in the field of hip prostheses, image based model development and analysis of the human knee joint, kinematics of the hip joint, micro-scale analysis of compositional and mechanical properties of dentin, automated techniques for cervical cell image analysis, and biomedical imaging and computational modeling in cardiovascular disease. The book will be of interest to researchers, Ph.D students, and graduate students with multidisciplinary interests related to image analysis and understanding, medical imaging, biomechanics, simulation and modeling, experimental analysis
In the last two decades, the field of time-frequency analysis has evolved into a widely recognized and applied discipline of signal processing. Besides linear time-frequency representations such as the short-time Fourier transform, the Gabor transform, and the wavelet transform, an important contribution to this development has undoubtedly been the Wigner distribution (WD) which holds an exceptional position within the field of bilinear/quadratic time-frequency representations. The WD was first defined in quantum mechanics as early as 1932 by the later Nobel laureate E. Wigner. In 1948, J. Ville introduced this concept in signal analysis. Based on investigations of its mathematical structure and properties by N.G. de Bruijn in 1967, the WD was brought to the attention of a larger signal processing community in 1980. The WD was soon recognized to be important for two reasons: firstly, it provides a powerful theoretical basis for quadratic time-frequency analysis; secondly, its discrete-time form (supplemented by suitable windowing and smoothing) is an eminently practical signal analysis tool. The seven chapters of this book cover a wide range of different aspects of the WD and other linear time-frequency distributions: properties such as positivity, spread, and interference term geometry; signal synthesis methods and their application to signal design, time-frequency filtering, and signal separation; WD based analysis of nonstationary random processes; singular value decompositions and their application to WD based detection and classification; and optical applications of the WD. The size of the chapters has been chosen such that an in-depth treatment of the various topics isachieved.
This text/reference provides background for those new to the field, gives numerous problems sets and practical examples, and discusses computer aided design and analysis. Annotation copyright Book News, Inc. Portland, Or.
The new multimedia standards (for example, MPEG-21) facilitate the seamless integration of multiple modalities into interoperable multimedia frameworks, transforming the way people work and interact with multimedia data. These key technologies and multimedia solutions interact and collaborate with each other in increasingly effective ways, contributing to the multimedia revolution and having a significant impact across a wide spectrum of consumer, business, healthcare, education, and governmental domains. This book aims to provide a complete coverage of the areas outlined and to bring together the researchers from academic and industry as well as practitioners to share ideas, challenges, and solutions relating to the multifaceted aspects of this field.
To my wife, Mitu - Vivek Bannore Preface Preface In many imaging systems, under-sampling and aliasing occurs frequently leading to degradation of image quality. Due to the limited number of sensors available on the digital cameras, the quality of images captured is also limited. Factors such as optical or atmospheric blur and sensor noise can also contribute further to the d- radation of image quality. Super-Resolution is an image reconstruction technique that enhances a sequence of low-resolution images or video frames by increasing the spatial resolution of the images. Each of these low-resolution images contain only incomplete scene information and are geometrically warped, aliased, and - der-sampled. Super-resolution technique intelligently fuses the incomplete scene information from several consecutive low-resolution frames to reconstruct a hi- resolution representation of the original scene. In the last decade, with the advent of new technologies in both civil and mi- tary domain, more computer vision applications are being developed with a demand for high-quality high-resolution images. In fact, the demand for high- resolution images is exponentially increasing and the camera manufacturing te- nology is unable to cope up due to cost efficiency and other practical reasons.
This book provides an overview of model-based environmental visual perception for humanoid robots. The visual perception of a humanoid robot creates a bidirectional bridge connecting sensor signals with internal representations of environmental objects. The objective of such perception systems is to answer two fundamental questions: What & where is it? To answer these questions using a sensor-to-representation bridge, coordinated processes are conducted to extract and exploit cues matching robot's mental representations to physical entities. These include sensor & actuator modeling, calibration, filtering, and feature extraction for state estimation. This book discusses the following topics in depth: * Active Sensing: Robust probabilistic methods for optimal, high dynamic range image acquisition are suitable for use with inexpensive cameras. This enables ideal sensing in arbitrary environmental conditions encountered in human-centric spaces. The book quantitatively shows the importance of equipping robots with dependable visual sensing. * Feature Extraction & Recognition: Parameter-free, edge extraction methods based on structural graphs enable the representation of geometric primitives effectively and efficiently. This is done by eccentricity segmentation providing excellent recognition even on noisy & low-resolution images. Stereoscopic vision, Euclidean metric and graph-shape descriptors are shown to be powerful mechanisms for difficult recognition tasks. * Global Self-Localization & Depth Uncertainty Learning: Simultaneous feature matching for global localization and 6D self-pose estimation are addressed by a novel geometric and probabilistic concept using intersection of Gaussian spheres. The path from intuition to the closed-form optimal solution determining the robot location is described, including a supervised learning method for uncertainty depth modeling based on extensive ground-truth training data from a motion capture system. The methods and experiments are presented in self-contained chapters with comparisons and the state of the art. The algorithms were implemented and empirically evaluated on two humanoid robots: ARMAR III-A & B. The excellent robustness, performance and derived results received an award at the IEEE conference on humanoid robots and the contributions have been utilized for numerous visual manipulation tasks with demonstration at distinguished venues such as ICRA, CeBIT, IAS, and Automatica.
This book addresses the problems that hinder image authentication in the presence of noise. It considers the advantages and disadvantages of existing algorithms for image authentication and shows new approaches and solutions for robust image authentication. The state of the art algorithms are compared and, furthermore, innovative approaches and algorithms are introduced. The introduced algorithms are applied to improve image authentication, watermarking and biometry. Aside from presenting new directions and algorithms for robust image authentication in the presence of noise, as well as image correction, this book also: Provides an overview of the state of the art algorithms for image authentication in the presence of noise and modifications, as well as a comparison of these algorithms, Presents novel algorithms for robust image authentication, whereby the image is tried to be corrected and authenticated, Examines different views for the solution of problems connected to image authentication in the presence of noise, Shows examples, how the new techniques can be applied to image authentication, watermarking and biometry. This book is written on the one hand for students, who want to learn about image processing, authentication, watermarking and biometry, and on the other hand for engineers and researchers, who work on aspects of robustness against modifications of secure images.
This text on geometry is devoted to various central geometrical topics including: graphs of functions, transformations, (non-)Euclidean geometries, curves and surfaces as well as their applications in a variety of disciplines. This book presents elementary methods for analytical modeling and demonstrates the potential for symbolic computational tools to support the development of analytical solutions. The author systematically examines several powerful tools of MATLAB (R) including 2D and 3D animation of geometric images with shadows and colors and transformations using matrices. With over 150 stimulating exercises and problems, this text integrates traditional differential and non-Euclidean geometries with more current computer systems in a practical and user-friendly format. This text is an excellent classroom resource or self-study reference for undergraduate students in a variety of disciplines.
This book discusses computer vision, a noncontact as well as a nondestructive technique involving the development of theoretical and algorithmic tools for automatic visual understanding and recognition which finds huge applications in agricultural productions. It also entails how rendering of machine learning techniques to computer vision algorithms is boosting this sector with better productivity by developing more precise systems. Computer vision and machine learning (CV-ML) helps in plant disease assessment along with crop condition monitoring to control the degradation of yield, quality, and severe financial loss for farmers. Significant scientific and technological advances have been made in defect assessment, quality grading, disease recognition, pests, insects, fruits, and vegetable types recognition and evaluation of a wide range of agricultural plants, crops, leaves, and fruits. The book discusses intelligent robots developed with the touch of CV-ML which can help farmers to perform various tasks like planting, weeding, harvesting, plant health monitoring, and so on. The topics covered in the book include plant, leaf, and fruit disease detection, crop health monitoring, applications of robots in agriculture, precision farming, assessment of product quality and defects, pest, insect, fruits, and vegetable types recognition.
The "digital revolution" of the last two decades has pervaded
innumerable aspects of our daily lives and changed our planet
irreversibly. The shift from analog to digital broadcasting has
facilitated a seemingly infinite variety of new
applications-audience interactivity being but one example. The
greater efficiency and compression of digital media have endowed
broadcasters with a "digital dividend" of spare transmission
capacity over and above the requirements of terrestrial
broadcasting. The question is, who will use it, and how? Comparing
the European experience with that of broadcasters elsewhere in the
world, the author sketches the current status of international
frequency management, quantifies the value of the "dividend"
itself, analyzes the details of the analog-to-digital switchovers
already completed, and posits what the future holds for the sector.
As we grapple with new devices, inconceivable a mere generation
ago, that allow us to access digital media instantly, anywhere and
at any time of day, this book is a potent reminder that what we
have witnessed so far may be just the first wavering steps along a
road whose destination we can only guess at.
In the last decade, a number of powerful kernel-based learning methods have been proposed in the machine learning community: support vector machines (SVMs), kernel fisher discriminant (KFD) analysis, kernel PCA/ICA, kernel mutual information, kernel k-means, and kernel ARMA. Successful applications of these algorithms have been reported in many fields, such as medicine, bioengineering, communications, audio and image processing, and computational biology and bioinformatics. ""Kernel Methods in Bioengineering, Signal and Image Processing"" covers real-world applications, such as computational biology, text categorization, time series prediction, interpolation, system identification, speech recognition, image de-noising, image coding, classification, and segmentation. ""Kernel Methods in Bioengineering, Signal and Image Processing"" encompasses the vast field of kernel methods from a multidisciplinary approach by presenting chapters dedicated to adaptation and use of kernel methods in the selected areas of bioengineering, signal processing and communications, and image processing.
Kernel Learning Algorithms for Face Recognition covers the framework of kernel based face recognition. This book discusses the advanced kernel learning algorithms and its application on face recognition. This book also focuses on the theoretical deviation, the system framework and experiments involving kernel based face recognition. Included within are algorithms of kernel based face recognition, and also the feasibility of the kernel based face recognition method. This book provides researchers in pattern recognition and machine learning area with advanced face recognition methods and its newest applications.
Written to be compatible with a companion text, Fundamentals of acoustics (Wiley, 1982), which covers the basics and math concepts. For seniors and first-year graduate students who need a detailed, engineering design guide to acoustics applications written from an applied science and engineering bas
An open source project backed by years of continual development, ImageMagick supports over 90 image formats and can perform impressive operations such as creating images from scratch; changing colors; stretching, rotating, and overlaying images; and overlaying text on images. Whether you use ImageMagick to manage the family photos or to embark on a job involving millions of images, this book will provide you with the knowledge to manage your images with ease. An open source project backed by years of continual development, ImageMagick supports over 90 image formats and can perform impressive operations such as creating images from scratch; changing colors; stretching, rotating, and overlaying images; and overlaying text on images. Whether you use ImageMagick to manage the family photos or to embark on a job involving millions of images, this book will provide you with the knowledge to manage your images with ease. |
![]() ![]() You may like...
Advanced Boundary Element Methods…
Joachim Gwinner, Ernst Peter Stephan
Hardcover
R3,944
Discovery Miles 39 440
Township Economy - People, Spaces And…
Andrew Charman, Leif Petersen, …
Paperback
![]()
Opinion Mining and Text Analytics on…
Pantea Keikhosrokiani, Moussa Pourya Asl
Hardcover
R10,590
Discovery Miles 105 900
Human Resource Management In South…
Surette Warnich, Elbert, …
Paperback
![]() R617 Discovery Miles 6 170
Human Resource Management In South…
Surette Warnich, Michael R. Carrell, …
Paperback
Clifford Algebras and Their Applications…
Rafal Ablamowicz, Bertfried Fauser
Hardcover
R2,669
Discovery Miles 26 690
Coding Theory and Applications - 4th…
Raquel Pinto, Paula Rocha Malonek, …
Hardcover
R3,110
Discovery Miles 31 100
|