![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > Applications of computing > Image processing > General
The book presents findings, views and ideas on what exact problems of image processing, pattern recognition and generation can be efficiently solved by cellular automata architectures. This volume provides a convenient collection in this area, in which publications are otherwise widely scattered throughout the literature. The topics covered include image compression and resizing; skeletonization, erosion and dilation; convex hull computation, edge detection and segmentation; forgery detection and content based retrieval; and pattern generation. The book advances the theory of image processing, pattern recognition and generation as well as the design of efficient algorithms and hardware for parallel image processing and analysis. It is aimed at computer scientists, software programmers, electronic engineers, mathematicians and physicists, and at everyone who studies or develops cellular automaton algorithms and tools for image processing and analysis, or develops novel architectures and implementations of massive parallel computing devices. The book will provide attractive reading for a general audience because it has do-it-yourself appeal: all the computer experiments presented within it can be implemented with minimal knowledge of programming. The simplicity yet substantial functionality of the cellular automaton approach, and the transparency of the algorithms proposed, makes the text ideal supplementary reading for courses on image processing, parallel computing, automata theory and applications."
This book describes recent innovations in 3D media and technologies, with coverage of 3D media capturing, processing, encoding, and adaptation, networking aspects for 3D Media, and quality of user experience (QoE). The contributions are based on the results of the FP7 European Project ROMEO, which focuses on new methods for the compression and delivery of 3D multi-view video and spatial audio, as well as the optimization of networking and compression jointly across the future Internet. The delivery of 3D media to individual users remains a highly challenging problem due to the large amount of data involved, diverse network characteristics and user terminal requirements, as well as the user's context such as their preferences and location. As the number of visual views increases, current systems will struggle to meet the demanding requirements in terms of delivery of consistent video quality to fixed and mobile users. ROMEO will present hybrid networking solutions that combine the DVB-T2 and DVB-NGH broadcast access network technologies together with a QoE aware Peer-to-Peer (P2P) distribution system that operates over wired and wireless links. Live streaming 3D media needs to be received by collaborating users at the same time or with imperceptible delay to enable them to watch together while exchanging comments as if they were all in the same location. This book is the last of a series of three annual volumes devoted to the latest results of the FP7 European Project ROMEO. The present volume provides state-of-the-art information on 3D multi-view video, spatial audio networking protocols for 3D media, P2P 3D media streaming, and 3D Media delivery across heterogeneous wireless networks among other topics. Graduate students and professionals in electrical engineering and computer science with an interest in 3D Future Internet Media will find this volume to be essential reading.
This volume aims to stimulate discussions on research involving the use of data and digital images as an understanding approach for analysis and visualization of phenomena and experiments. The emphasis is put not only on graphically representing data as a way of increasing its visual analysis, but also on the imaging systems which contribute greatly to the comprehension of real cases. Scientific Visualization and Imaging Systems encompass multidisciplinary areas, with applications in many knowledge fields such as Engineering, Medicine, Material Science, Physics, Geology, Geographic Information Systems, among others. This book is a selection of 13 revised and extended research papers presented in the International Conference on Advanced Computational Engineering and Experimenting -ACE-X conferences 2010 (Paris), 2011 (Algarve), 2012 (Istanbul) and 2013 (Madrid). The examples were particularly chosen from materials research, medical applications, general concepts applied in simulations and image analysis and other interesting related problems.
"Advances in computer technology and developments such as the Internet provide a constant momentum to design new techniques and algorithms to support computer graphics. Modelling, animation and rendering remain principal topics in the filed of computer graphics and continue to attract researchers around the world." This volume contains the papers presented at Computer Graphics International 2002, in July, at the University of Bradford, UK. These papers represent original research in computer graphics from around the world and cover areas such as:- Real-time computer animation - Image based rendering - Non photo-realistic rendering - Virtual reality - Avatars - Geometric and solid modelling - Computational geometry - Physically based modelling - Graphics hardware architecture - Data visualisation - Data compression The focus is on the commercial application and industrial use of computer graphics and digital media systems.
This book discusses research, methods, and recent developments in the interdisciplinary field that spans research in visualization, eye tracking, human-computer interaction, and psychology. It presents extended versions of papers from the First Workshop on Eye Tracking and Visualization (ETVIS), which was organized as a workshop of the IEEE VIS Conference 2015. Topics include visualization and visual analytics of eye-tracking data, metrics and cognitive models, eye-tracking experiments in the context of visualization interfaces, and eye tracking in 3D and immersive environments. The extended ETVIS papers are complemented by a chapter offering an overview of visualization approaches for analyzing eye-tracking data and a chapter that discusses electrooculography (EOG) as an alternative of acquiring information about eye movements. Covering scientific visualization, information visualization, and visual analytics, this book is a valuable resource for eye-tracking researchers within the visualization community.
This graduate-level text provides a language for understanding, unifying, and implementing a wide variety of algorithms for digital signal processing - in particular, to provide rules and procedures that can simplify or even automate the task of writing code for the newest parallel and vector machines. It thus bridges the gap between digital signal processing algorithms and their implementation on a variety of computing platforms. The mathematical concept of tensor product is a recurring theme throughout the book, since these formulations highlight the data flow, which is especially important on supercomputers. Because of their importance in many applications, much of the discussion centres on algorithms related to the finite Fourier transform and to multiplicative FFT algorithms.
Advancements in digital sensor technology, digital image analysis techniques, as well as computer software and hardware have brought together the fields of computer vision and photogrammetry, which are now converging towards sharing, to a great extent, objectives and algorithms. The potential for mutual benefits by the close collaboration and interaction of these two disciplines is great, as photogrammetric know-how can be aided by the most recent image analysis developments in computer vision, while modern quantitative photogrammetric approaches can support computer vision activities. Devising methodologies for automating the extraction of man-made objects (e.g. buildings, roads) from digital aerial or satellite imagery is an application where this cooperation and mutual support is already reaping benefits. The valuable spatial information collected using these interdisciplinary techniques is of improved qualitative and quantitative accuracy. This book offers a comprehensive selection of high-quality and in-depth contributions from world-wide leading research institutions, treating theoretical as well as implementational issues, and representing the state-of-the-art on this subject among the photogrammetric and computer vision communities.
This book explains efficient solutions for segmenting the intensity levels of different types of multilevel images. The authors present hybrid soft computing techniques, which have advantages over conventional soft computing solutions as they incorporate data heterogeneity into the clustering/segmentation procedures. This is a useful introduction and reference for researchers and graduate students of computer science and electronics engineering, particularly in the domains of image processing and computational intelligence.
Despite their novelty, wavelets have a tremendous impact on a number of modern scientific disciplines, particularly on signal and image analysis. Because of their powerful underlying mathematical theory, they offer exciting opportunities for the design of new multi-resolution processing algorithms and effective pattern recognition systems. This book provides a much-needed overview of current trends in the practical application of wavelet theory. It combines cutting edge research in the rapidly developing wavelet theory with ideas from practical signal and image analysis fields. Subjects dealt with include balanced discussions on wavelet theory and its specific application in diverse fields, ranging from data compression to seismic equipment. In addition, the book offers insights into recent advances in emerging topics such as double density DWT, multiscale Bayesian estimation, symmetry and locality in image representation, and image fusion. Audience: This volume will be of interest to graduate students and researchers whose work involves acoustics, speech, signal and image processing, approximations and expansions, Fourier analysis, and medical imaging.
Biometrics-based authentication and identification are emerging as the most reliable method to authenticate and identify individuals. Biometrics requires that the person to be identified be physically present at the point-of-identification and relies on something which you are or you do' to provide better security, increased efficiency, and improved accuracy. Automated biometrics deals with physiological or behavioral characteristics such as fingerprints, signature, palmprint, iris, hand, voice and face that can be used to authenticate a person's identity or establish an identity from a database. With rapid progress in electronic and Internet commerce, there is also a growing need to authenticate the identity of a person for secure transaction processing. Designing an automated biometrics system to handle large population identification, accuracy and reliability of authentication are challenging tasks. Currently, there are over ten different biometrics systems that are either widely used or under development. Some automated biometrics, such as fingerprint identification and speaker verification, have received considerable attention over the past 25 years, and some issues like face recognition and iris-based authentication have been studied extensively resulting in successful development of biometrics systems in commercial applications. However, very few books are exclusively devoted to such issues of automated biometrics. Automated Biometrics: Technologies and Systems systematically introduces the technologies and systems, and explores how to design the corresponding systems with in-depth discussion. The issues addressed in this book are highly relevant to many fundamental concerns of both researchers and practitioners of automated biometrics in computer and system security.
A widely used, classroom-tested text, Applied Medical Image Processing: A Basic Course delivers an ideal introduction to image processing in medicine, emphasizing the clinical relevance and special requirements of the field. Avoiding excessive mathematical formalisms, the book presents key principles by implementing algorithms from scratch and using simple MATLAB (R)/Octave scripts with image data and illustrations on downloadable resources or companion website. Organized as a complete textbook, it provides an overview of the physics of medical image processing and discusses image formats and data storage, intensity transforms, filtering of images and applications of the Fourier transform, three-dimensional spatial transforms, volume rendering, image registration, and tomographic reconstruction. This Second Edition of the bestseller: Contains two brand-new chapters on clinical applications and image-guided therapy Devotes more attention to the subject of color space Includes additional examples from radiology, internal medicine, surgery, and radiation therapy Incorporates freely available programs in the public domain (e.g., GIMP, 3DSlicer, and ImageJ) when applicable Beneficial to students of medical physics, biomedical engineering, computer science, applied mathematics, and related fields, as well as medical physicists, radiographers, radiologists, and other professionals, Applied Medical Image Processing: A Basic Course, Second Edition is fully updated and expanded to ensure a perfect blend of theory and practice.
129 6.2 Representation of hints. 131 6.3 Monotonicity hints .. . 134 6.4 Theory ......... . 139 6.4.1 Capacity results 140 6.4.2 Decision boundaries 144 6.5 Conclusion 145 6.6 References....... ... 146 7 Analysis and Synthesis Tools for Robust SPRness 147 C. Mosquera, J.R. Hernandez, F. Perez-Gonzalez 7.1 Introduction.............. 147 7.2 SPR Analysis of Uncertain Systems. 153 7.2.1 The Poly topic Case . 155 7.2.2 The ZP-Ball Case ...... . 157 7.2.3 The Roots Space Case ... . 159 7.3 Synthesis of LTI Filters for Robust SPR Problems 161 7.3.1 Algebraic Design for Two Plants ..... . 161 7.3.2 Algebraic Design for Three or More Plants 164 7.3.3 Approximate Design Methods. 165 7.4 Experimental results 167 7.5 Conclusions 168 7.6 References ..... . 169 8 Boundary Methods for Distribution Analysis 173 J.L. Sancho et aZ. 8.1 Introduction ............. . 173 8.1.1 Building a Classifier System . 175 8.2 Motivation ............. . 176 8.3 Boundary Methods as Feature-Set Evaluation 177 8.3.1 Results ................ . 179 8.3.2 Feature Set Evaluation using Boundary Methods: S- mary. . . . . . . . . . . . . . . . . . . .. . . 182 . . .
In his paper Theory of Communication [Gab46], D. Gabor proposed the use of a family of functions obtained from one Gaussian by time-and frequency shifts. Each of these is well concentrated in time and frequency; together they are meant to constitute a complete collection of building blocks into which more complicated time-depending functions can be decomposed. The application to communication proposed by Gabor was to send the coeffi cients of the decomposition into this family of a signal, rather than the signal itself. This remained a proposal-as far as I know there were no seri ous attempts to implement it for communication purposes in practice, and in fact, at the critical time-frequency density proposed originally, there is a mathematical obstruction; as was understood later, the family of shifted and modulated Gaussians spans the space of square integrable functions [BBGK71, Per71] (it even has one function to spare [BGZ75] . . . ) but it does not constitute what we now call a frame, leading to numerical insta bilities. The Balian-Low theorem (about which the reader can find more in some of the contributions in this book) and its extensions showed that a similar mishap occurs if the Gaussian is replaced by any other function that is "reasonably" smooth and localized. One is thus led naturally to considering a higher time-frequency density.
Traditional Pattern Recognition (PR) and Computer Vision (CV) technologies have mainly focused on full automation, even though full automation often proves elusive or unnatural in many applications, where the technology is expected to assist rather than replace the human agents. However, not all the problems can be automatically solved being the human interaction the only way to tackle those applications. Recently, multimodal human interaction has become an important field of increasing interest in the research community. Advanced man-machine interfaces with high cognitive capabilities are a hot research topic that aims at solving challenging problems in image and video applications. Actually, the idea of computer interactive systems was already proposed on the early stages of computer science. Nowadays, the ubiquity of image sensors together with the ever-increasing computing performance has open new and challenging opportunities for research in multimodal human interaction. This book aims to show how existing PR and CV technologies can naturally evolve using this new paradigm. The chapters of this book show different successful case studies of multimodal interactive technologies for both image and video applications. They cover a wide spectrum of applications, ranging from interactive handwriting transcriptions to human-robot interactions in real environments.
"3D Surface Reconstruction: Multi-Scale Hierarchical Approaches "presents methods to model 3D objects in an incremental way so as to capture more finer details at each step. The configuration of the model parameters, the rationale and solutions are described and discussed in detail so the reader has a strong understanding of the methodology. Modeling starts from data captured by 3D digitizers and makes the process even more clear and engaging. Innovative approaches, based on two popular machine learning paradigms, namely Radial Basis Functions and the Support Vector Machines, are also introduced. These paradigms are innovatively extended to a multi-scale incremental structure, based on a hierarchical scheme. The resulting approaches allow readers to achieve high accuracy with limited computational complexity, and makes the approaches appropriate for online, real-time operation. Applications can be found in any domain in which regression is required. "3D Surface Reconstruction: Multi-Scale Hierarchical Approaches" is designed as a secondary text book or reference for advanced-level students and researchers in computer science. This book also targets practitioners working in computer vision or machine learning related fields.
Acquiring spatial data for geoinformation systems is still mainly done by human operators who analyze images using classical photogrammetric equipment or digitize maps, possibly assisted by some low level image processing. Automation of these tasks is difficult due to the complexity of the object, the topography, and the deficiency of current pattern recognition and image analysis tools for achieving a reliable transition from the data to the high level description of topographic objects. It appears that progress in automation only can be achieved by incorporating domain-specific semantic models into the analysis procedures. This volume collects papers which were presented at the Workshop "SMATI '97." The workshop focused on "Semantic Modeling for the Acquisition of Topographic Information from Images and Maps." This volume offers a comprehensive selection of high-quality and in-depth contributions by experts of the field coming from leading research institutes, treating both theoretical and implementation issues and integrating aspects of photogrammetry, cartography, computer vision, and image understanding.
The fully automated estimation of the 6 degrees of freedom camera motion and the imaged 3D scenario using as the only input the pictures taken by the camera has been a long term aim in the computer vision community. The associated line of research has been known as Structure from Motion (SfM). An intense research effort during the latest decades has produced spectacular advances; the topic has reached a consistent state of maturity and most of its aspects are well known nowadays. 3D vision has immediate applications in many and diverse fields like robotics, videogames and augmented reality; and technological transfer is starting to be a reality. This book describes one of the first systems for sparse point-based 3D reconstruction and egomotion estimation from an image sequence; able to run in real-time at video frame rate and assuming quite weak prior knowledge about camera calibration, motion or scene. Its chapters unify the current perspectives of the robotics and computer vision communities on the 3D vision topic: As usual in robotics sensing, the explicit estimation and propagation of the uncertainty hold a central role in the sequential video processing and is shown to boost the efficiency and performance of the 3D estimation. On the other hand, some of the most relevant topics discussed in SfM by the computer vision scientists are addressed under this probabilistic filtering scheme; namely projective models, spurious rejection, model selection and self-calibration.
Mobile robots are playing an increasingly important role in our world. Remotely operated vehicles are in everyday use for hazardous tasks such as charting and cleaning up hazardous waste spills, construction work of tunnels and high rise buildings, and underwater inspection of oil drilling platforms in the ocean. A whole host of further applications, however, beckons robots capable of autonomous operation without or with very little intervention of human operators. Such robots of the future will explore distant planets, map the ocean floor, study the flow of pollutants and carbon dioxide through our atmosphere and oceans, work in underground mines, and perform other jobs we cannot even imagine; perhaps even drive our cars and walk our dogs. The biggest technical obstacles to building mobile robots are vision and navigation-enabling a robot to see the world around it, to plan and follow a safe path through its environment, and to execute its tasks. At the Carnegie Mellon Robotics Institute, we are studying those problems both in isolation and by building complete systems. Since 1980, we have developed a series of small indoor mobile robots, some experimental, and others for practical applicationr Our outdoor autonomous mobile robot research started in 1984, navigating through the campus sidewalk network using a small outdoor vehicle called the Terregator. In 1985, with the advent of DARPA's Autonomous Land Vehicle Project, we constructed a computer controlled van with onboard sensors and researchers. In the fall of 1987, we began the development of a six-legged Planetary Rover.
This book proposes soft computing techniques for segmenting real-life images in applications such as image processing, image mining, video surveillance, and intelligent transportation systems. The book suggests hybrids deriving from three main approaches: fuzzy systems, primarily used for handling real-life problems that involve uncertainty; artificial neural networks, usually applied for machine cognition, learning, and recognition; and evolutionary computation, mainly used for search, exploration, efficient exploitation of contextual information, and optimization. The contributed chapters discuss both the strengths and the weaknesses of the approaches, and the book will be valuable for researchers and graduate students in the domains of image processing and computational intelligence.
This book presents a selection of chapters, written by leading international researchers, related to the automatic analysis of gestures from still images and multi-modal RGB-Depth image sequences. It offers a comprehensive review of vision-based approaches for supervised gesture recognition methods that have been validated by various challenges. Several aspects of gesture recognition are reviewed, including data acquisition from different sources, feature extraction, learning, and recognition of gestures.
Realistic and immersive simulations of land, sea, and sky are requisite to the military use of visual simulation for mission planning. Until recently, the simulation of natural environments has been limited first of all by the pixel resolution of visual displays. Visual simulation of those natural environments has also been limited by the scarcity of detailed and accurate physical descriptions of them. Our aim has been to change all that. To this end, many of us have labored in adjacent fields of psych- ogy, engineering, human factors, and computer science. Our efforts in these areas were occasioned by a single question: how distantly can fast-jet pilots discern the aspect angle of an opposing aircraft, in visual simulation? This question needs some ela- ration: it concerns fast jets, because those simulations involve the representation of high speeds over wide swaths of landscape. It concerns pilots, since they begin their careers with above-average acuity of vision, as a population. And it concerns aspect angle, which is as much as to say that the three-dimensional orientation of an opposing aircraft relative to one's own, as revealed by motion and solid form. v vi Preface The single question is by no means simple. It demands a criterion for eye-limiting resolution in simulation. That notion is a central one to our study, though much abused in general discussion. The question at hand, as it was posed in the 1990s, has been accompanied by others.
This book presents an introduction to new and important research in the images processing and analysis area. It is hoped that this book will be useful for scientists and students involved in many aspects of image analysis. The book does not attempt to cover all of the aspects of Computer Vision, but the chapters do present some state of the art examples.
Landmarks are preferred image features for a variety of computer vision tasks such as image mensuration, registration, camera calibration, motion analysis, 3D scene reconstruction, and object recognition. Main advantages of using landmarks are robustness w. r. t. lightning conditions and other radiometric vari ations as well as the ability to cope with large displacements in registration or motion analysis tasks. Also, landmark-based approaches are in general com putationally efficient, particularly when using point landmarks. Note, that the term landmark comprises both artificial and natural landmarks. Examples are comers or other characteristic points in video images, ground control points in aerial images, anatomical landmarks in medical images, prominent facial points used for biometric verification, markers at human joints used for motion capture in virtual reality applications, or in- and outdoor landmarks used for autonomous navigation of robots. This book covers the extraction oflandmarks from images as well as the use of these features for elastic image registration. Our emphasis is onmodel-based approaches, i. e. on the use of explicitly represented knowledge in image analy sis. We principally distinguish between geometric models describing the shape of objects (typically their contours) and intensity models, which directly repre sent the image intensities, i. e., the appearance of objects. Based on these classes of models we develop algorithms and methods for analyzing multimodality im ages such as traditional 20 video images or 3D medical tomographic images."
The advances of live cell video imaging and high-throughput technologies for functional and chemical genomics provide unprecedented opportunities to understand how biological processes work in subcellularand multicellular systems. The interdisciplinary research field of Video Bioinformatics is defined by BirBhanu as the automated processing, analysis, understanding, data mining, visualization, query-basedretrieval/storage of biological spatiotemporal events/data and knowledge extracted from dynamic imagesand microscopic videos. Video bioinformatics attempts to provide a deeper understanding of continuousand dynamic life processes.Genome sequences alone lack spatial and temporal information, and video imaging of specific moleculesand their spatiotemporal interactions, using a range of imaging methods, are essential to understandhow genomes create cells, how cells constitute organisms, and how errant cells cause disease. The bookexamines interdisciplinary research issues and challenges with examples that deal with organismal dynamics,intercellular and tissue dynamics, intracellular dynamics, protein movement, cell signaling and softwareand databases for video bioinformatics.Topics and Features* Covers a set of biological problems, their significance, live-imaging experiments, theory andcomputational methods, quantifiable experimental results and discussion of results.* Provides automated methods for analyzing mild traumatic brain injury over time, identifying injurydynamics after neonatal hypoxia-ischemia and visualizing cortical tissue changes during seizureactivity as examples of organismal dynamics* Describes techniques for quantifying the dynamics of human embryonic stem cells with examplesof cell detection/segmentation, spreading and other dynamic behaviors which are important forcharacterizing stem cell health* Examines and quantifies dynamic processes in plant and fungal systems such as cell trafficking,growth of pollen tubes in model systems such as Neurospora Crassa and Arabidopsis* Discusses the dynamics of intracellular molecules for DNA repair and the regulation of cofilintransport using video analysis* Discusses software, system and database aspects of video bioinformatics by providing examples of5D cell tracking by FARSIGHT open source toolkit, a survey on available databases and software,biological processes for non-verbal communications and identification and retrieval of moth imagesThis unique text will be of great interest to researchers and graduate students of Electrical Engineering,Computer Science, Bioengineering, Cell Biology, Toxicology, Genetics, Genomics, Bioinformatics, ComputerVision and Pattern Recognition, Medical Image Analysis, and Cell Molecular and Developmental Biology.The large number of example applications will also appeal to application scientists and engineers.Dr. Bir Bhanu is Distinguished Professor of Electrical & C omputer Engineering, Interim Chair of theDepartment of Bioengineering, Cooperative Professor of Computer Science & Engineering, and MechanicalEngineering and the Director of the Center for Research in Intelligent Systems, at the University of California,Riverside, California, USA.Dr. Prue Talbot is Professor of Cell Biology & Neuroscience and Director of the Stem Cell Center and Core atthe University of California Riverside, California, USA.
Whole Body Interaction is The integrated capture and processing of human signals from physical, physiological, cognitive and emotional sources to generate feedback to those sources for interaction in a digital environment (England 2009). "Whole Body Interaction "looks at the challenges of Whole Body Interaction from the perspectives of design, engineering and research methods. How do we take physical motion, cognition, physiology, emotion and social context to push boundaries of Human Computer Interaction to involve the complete set of human capabilities? Through the use of various applications the authors attempt to answer this question and set a research agenda for future work. Aimed at students and researchers who are looking for new project ideas or to extend their existing work with new dimensions of interaction. " |
![]() ![]() You may like...
Statistics for Management and Economics
Gerald Keller, Nicoleta Gaciu
Paperback
The Larger Illustrated Guide Sasol Birds…
Ian Sinclair, Phil Hockey
Paperback
CNOR Exam Practice Questions - CNOR…
Mometrix Nursing Certification Test Te
Paperback
|