![]() |
![]() |
Your cart is empty |
||
Books > Computing & IT > Applications of computing > Image processing > General
This book delivers a course module for advanced undergraduates,
postgraduates and researchers of electronics, computing science,
medical imaging, or wherever the study of identification and
classification of objects by electronics-driven image processing
and pattern recognition is relevant. Object analysis first uses
image processing to detect objects and extract their features, then
identifies and classifies them by pattern recognition. Its manifold
applications include recognition of objects in satellite images
which enable discrimination between different objects, such as
fishing boats, merchant ships or warships; machine spare parts e.g.
screws, nuts etc. (engineering); detection of cancers, ulcers,
tumours and so on (medicine); and recognition of soil particles of
different types (agriculture or soil mechanics in civil
engineering).
This is the second volume in a trilogy on modern Signal Processing. The three books provide a concise exposition of signal processing topics, and a guide to support individual practical exploration based on MATLAB programs. This second book focuses on recent developments in response to the demands of new digital technologies. It is divided into two parts: the first part includes four chapters on the decomposition and recovery of signals, with special emphasis on images. In turn, the second part includes three chapters and addresses important data-based actions, such as adaptive filtering, experimental modeling, and classification.
This book presents an overview of the state of the art in video coding technology. Specifically, it introduces the tools of the AVS2 standard, describing how AVS2 can help to achieve a significant improvement in coding efficiency for future video networks and applications by incorporating smarter coding tools such as scene video coding. Features: introduces the basic concepts in video coding, and presents a short history of video coding technology and standards; reviews the coding framework, main coding tools, and syntax structure of AVS2; describes the key technologies used in the AVS2 standard, including prediction coding, transform coding, entropy coding, and loop-filters; examines efficient tools for scene video coding and surveillance video, and the details of a promising intelligent video coding system; discusses optimization technologies in video coding systems; provides a review of image, video, and 3D content quality assessment algorithms; surveys the hot research topics in video compression.
This text explains how advances in wavelet analysis provide new means for multiresolution analysis and describes its wide array of powerful tools. The book covers such topics as: the variations of the windowed Fourier transform; constructions of special waveforms suitable for specific tasks; the use of redundant representations in reconstruction and enhancement; applications of efficient numerical compression as a tool for fast numerical analysis; and approximation properties of various waveforms in different contexts.
Video monitoring has become a vital aspect within the global society as it helps prevent crime, promote safety, and track daily activities such as traffic. As technology in the area continues to improve, it is necessary to evaluate how video is being processed to improve the quality of images. Applied Video Processing in Surveillance and Monitoring Systems investigates emergent techniques in video and image processing by evaluating such topics as segmentation, noise elimination, encryption, and classification. Featuring real-time applications, empirical research, and vital frameworks within the field, this publication is a critical reference source for researchers, professionals, engineers, academicians, advanced-level students, and technology developers.
This book is a collection of research papers selected for presentation at the International Conference on Smart Computational Methods in Continuum Mechanics 2021, organized by Moscow Institute of Physics and Technology and the Institute for Computer Aided Design of Russian Academy of Sciences. The work is presented in two volumes. The primary objective of the book is to report the state-of-the-art on smart computational paradigms in continuum mechanics and explore the use of artificial intelligence paradigms such as neural nets and machine learning for improving the performance of the designed engineering systems. The book includes up-to-date smart computational methods which are used to solve problems in continuum mechanics, engineering, seismic prospecting, non-destructive testing, and so on. The main features of the book are the research papers on the application of novel smart methods including neural nets and machine learning, computational algorithms, smart software systems, and high-performance computer systems for solving complex engineering problems. The case studies pertaining to the real-world applications in the above fields are included. The book presents a collection of best research papers in English language from some of the world leaders in the field of smart system modelling and design of engineering systems.
Mathematical Methods for Signal and Image Analysis and Representation presents the mathematical methodology for generic image analysis tasks. In the context of this book an image may be any m-dimensional empirical signal living on an n-dimensional smooth manifold (typically, but not necessarily, a subset of spacetime). The existing literature on image methodology is rather scattered and often limited to either a deterministic or a statistical point of view. In contrast, this book brings together these seemingly different points of view in order to stress their conceptual relations and formal analogies. Furthermore, it does not focus on specific applications, although some are detailed for the sake of illustration, but on the methodological frameworks on which such applications are built, making it an ideal companion for those seeking a rigorous methodological basis for specific algorithms as well as for those interested in the fundamental methodology per se. Covering many topics at the forefront of current research, including anisotropic diffusion filtering of tensor fields, this book will be of particular interest to graduate and postgraduate students and researchers in the fields of computer vision, medical imaging and visual perception.
This book publishes a collection of original scientific research articles that address the state-of-art in using partial differential equations for image and signal processing. Coverage includes: level set methods for image segmentation and construction, denoising techniques, digital image inpainting, image dejittering, image registration, and fast numerical algorithms for solving these problems.
This book carries forward recent work on visual patterns and structures in digital images and introduces a near set-based a topology of digital images. Visual patterns arise naturally in digital images viewed as sets of non-abstract points endowed with some form of proximity (nearness) relation. Proximity relations make it possible to construct uniform topologies on the sets of points that constitute a digital image. In keeping with an interest in gaining an understanding of digital images themselves as a rich source of patterns, this book introduces the basics of digital images from a computer vision perspective. In parallel with a computer vision perspective on digital images, this book also introduces the basics of proximity spaces. Not only the traditional view of spatial proximity relations but also the more recent descriptive proximity relations are considered. The beauty of the descriptive proximity approach is that it is possible to discover visual set patterns among sets that are non-overlapping and non-adjacent spatially. By combining the spatial proximity and descriptive proximity approaches, the search for salient visual patterns in digital images is enriched, deepened and broadened. A generous provision of Matlab and Mathematica scripts are used in this book to lay bare the fabric and essential features of digital images for those who are interested in finding visual patterns in images. The combination of computer vision techniques and topological methods lead to a deep understanding of images.
Image technology is a continually evolving field with various
applications such as image processing and analysis, biometrics,
pattern recognition, object tracking, remote sensing, medicine
diagnoses and multimedia. Significant progress has been made in the
level of interest in image morphology, neural networks, full color
image processing, image data compression, image recognition, and
knowledge -based image analysis systems.
Praise for the Series:
In this book, three main notions will be used in the editors search of improvements in various areas of computer graphics: Artificial Intelligence, Viewpoint Complexity and Human Intelligence. Several Artificial Intelligence techniques are used in presented intelligent scene modelers, mainly declarative ones. Among them, the mostly used techniques are Expert systems, Constraint Satisfaction Problem resolution and Machine-learning. The notion of viewpoint complexity, that is complexity of a scene seen from a given viewpoint, will be used in improvement proposals for a lot of computer graphics problems like scene understanding, virtual world exploration, image-based modeling and rendering, ray tracing and radiosity. Very often, viewpoint complexity is used in conjunction with Artificial Intelligence techniques like Heuristic search and Problem resolution. The notions of artificial Intelligence and Viewpoint Complexity may help to automatically resolve a big number of computer graphics problems. However, there are special situations where is required to find a particular solution for each situation. In such a case, human intelligence has to replace, or to be combined with, artificial intelligence. Such cases, and proposed solutions are also presented in this book.
Principles of Visual Information Retrieval introduces the basic concepts and techniques in VIR and develops a foundation that can be used for further research and study.Divided into 2 parts, the first part describes the fundamental principles. A chapter is devoted to each of the main features of VIR, such as colour, texture and shape-based search. There is coverage of search techniques for time-based image sequences or videos, and an overview of how to combine all the basic features described and integrate context into the search process.The second part looks at advanced topics such as multimedia query, specification, visual learning and semantics, and offers state-of-the-art coverage that is not available in any other book on the market.This book will be essential reading for researchers in VIR, and for final year undergraduate and postgraduate students on courses such as Multimedia Information Retrieval, Multimedia Databases, Computer Vision and Pattern Recognition.
This indispensable text introduces the foundations of three-dimensional computer vision and describes recent contributions to the field. Fully revised and updated, this much-anticipated new edition reviews a range of triangulation-based methods, including linear and bundle adjustment based approaches to scene reconstruction and camera calibration, stereo vision, point cloud segmentation, and pose estimation of rigid, articulated, and flexible objects. Also covered are intensity-based techniques that evaluate the pixel grey values in the image to infer three-dimensional scene structure, and point spread function based approaches that exploit the effect of the optical system. The text shows how methods which integrate these concepts are able to increase reconstruction accuracy and robustness, describing applications in industrial quality inspection and metrology, human-robot interaction, and remote sensing.
Covers advances in the field of computer techniques and algorithms in digital signal processing.
This book deals with two fundamental issues in the semiotics of the image. The first is the relationship between image and observer: how does one look at an image? To answer this question, this book sets out to transpose the theory of enunciation formulated in linguistics over to the visual field. It also aims to clarify the gains made in contemporary visual semiotics relative to the semiology of Roland Barthes and Emile Benveniste. The second issue addressed is the relation between the forces, forms and materiality of the images. How do different physical mediums (pictorial, photographic and digital) influence visual forms? How does materiality affect the generativity of forms? On the forces within the images, the book addresses the philosophical thought of Gilles Deleuze and Rene Thom as well as the experiment of Aby Warburg's Atlas Mnemosyne. The theories discussed in the book are tested on a variety of corpora for analysis, including both paintings and photographs, taken from traditional as well as contemporary sources in a variety of social sectors (arts and sciences). Finally, semiotic methodology is contrasted with the computational analysis of large collections of images (Big Data), such as the "Media Visualization" analyses proposed by Lev Manovich and Cultural Analytics in the field of Computer Science to evaluate the impact of automatic analysis of visual forms on Digital Art History and more generally on the image sciences.
Advancements in digital sensor technology, digital image analysis techniques, as well as computer software and hardware have brought together the fields of computer vision and photogrammetry, which are now converging towards sharing, to a great extent, objectives and algorithms. The potential for mutual benefits by the close collaboration and interaction of these two disciplines is great, as photogrammetric know-how can be aided by the most recent image analysis developments in computer vision, while modern quantitative photogrammetric approaches can support computer vision activities. Devising methodologies for automating the extraction of man-made objects (e.g. buildings, roads) from digital aerial or satellite imagery is an application where this cooperation and mutual support is already reaping benefits. The valuable spatial information collected using these interdisciplinary techniques is of improved qualitative and quantitative accuracy. This book offers a comprehensive selection of high-quality and in-depth contributions from world-wide leading research institutions, treating theoretical as well as implementational issues, and representing the state-of-the-art on this subject among the photogrammetric and computer vision communities.
Due to the rapid increase in readily available computing power, a corre sponding increase in the complexity of problems being tackled has occurred in the field of systems as a whole. A plethora of new methods which can be used on the problems has also arisen with a constant desire to deal with more and more difficult applications. Unfortunately by increasing the ac curacy in models employed along with the use of appropriate algorithms with related features, the resultant necessary computations can often be of very high dimension. This brings with it a whole new breed of problem which has come to be known as "The Curse of Dimensionality" . The expression "Curse of Dimensionality" can be in fact traced back to Richard Bellman in the 1960's. However, it is only in the last few years that it has taken on a widespread practical significance although the term di mensionality does not have a unique precise meaning and is being used in a slightly different way in the context of algorithmic and stochastic complex ity theory or in every day engineering. In principle the dimensionality of a problem depends on three factors: on the engineering system (subject), on the concrete task to be solved and on the available resources. A system is of high dimension if it contains a lot of elements/variables and/or the rela tionship/connection between the elements/variables is complicated."
This book presents essential algorithms for the image processing pipeline of photo-printers and accompanying software tools, offering an exposition of multiple image enhancement algorithms, smart aspect-ratio changing techniques for borderless printing and approaches for non-standard printing modes. All the techniques described are content-adaptive and operate in an automatic mode thanks to machine learning reasoning or ingenious heuristics. The first part includes algorithms, for example, red-eye correction and compression artefacts reduction, that can be applied in any photo processing application, while the second part focuses specifically on printing devices, e.g. eco-friendly and anaglyph printing. The majority of the techniques presented have a low computational complexity because they were initially designed for integration in system-on-chip. The book reflects the authors' practical experience in algorithm development for industrial R&D.
Soft Computing Approach to Pattern Classification and Object Recognition establishes an innovative, unified approach to supervised pattern classification and model-based occluded object recognition. The book also surveys various soft computing tools, fuzzy relational calculus (FRC), genetic algorithm (GA) and multilayer perceptron (MLP) to provide a strong foundation for the reader. The supervised approach to pattern classification and model-based approach to occluded object recognition are treated in one framework , one based on either a conventional interpretation or a new interpretation of multidimensional fuzzy implication (MFI) and a novel notion of fuzzy pattern vector (FPV). By combining practice and theory, a completely independent design methodology was developed in conjunction with this supervised approach on a unified framework, and then tested thoroughly against both synthetic and real-life data. In the field of soft computing, such an application-oriented design study is unique in nature. The monograph essentially mimics the cognitive process of human decision making, and carries a message of perceptual integrity in representational diversity. Soft Computing Approach to Pattern Classification and Object Recognition is intended for researchers in the area of pattern classification and computer vision. Other academics and practitioners will also find the book valuable.
This book constitutes the refereed proceedings of the 10th IFIP TC 12 International Conference on Intelligent Information Processing, IIP 2018, held in Nanning, China, in October 2018. The 37 full papers and 8 short papers presented were carefully reviewed and selected from 80 submissions. They are organized in topical sections on machine learning, deep learning, multi-agent systems, neural computing and swarm intelligence, natural language processing, recommendation systems, social computing, business intelligence and security, pattern recognition, and image understanding.
Security and privacy are paramount concerns in information processing systems, which are vital to business, government and military operations and, indeed, society itself. Meanwhile, the expansion of the Internet and its convergence with telecommunication networks are providing incredible connectivity, myriad applications and, of course, new threats. Data and Applications Security XVII: Status and Prospects
describes original research results, practical experiences and
innovative ideas, all focused on maintaining security and privacy
in information processing systems and applications that pervade
cyberspace. The areas of coverage include: This book is the seventeenth volume in the series produced by the International Federation for Information Processing (IFIP) Working Group 11.3 on Data and Applications Security. It presents a selection of twenty-six updated and edited papers from the Seventeenth Annual IFIP TC11 / WG11.3 Working Conference on Data and Applications Security held at Estes Park, Colorado, USA in August 2003, together with a report on the conference keynote speech and a summary of the conference panel. The contents demonstrate the richness and vitality of the discipline, and other directions for future research in data and applications security. Data and Applications Security XVII: Status and Prospects is an invaluable resource for information assurance researchers, faculty members and graduate students, as well as for individuals engaged in research and development in the information technology sector.
The Distinguished Dissertation Series is published on behalf of the Conference of Professors and Heads of Computing and the British Computer Society, who annually select the best British PhD dissertations in computer science for publication. The dissertations are selected on behalf of the CPHC by a panel of eight academics. Each dissertation chosen makes a noteworthy contribution to the subject and reaches a high standard of exposition, placing all results clearly in the context of computer science as a whole. In this way computer scientists with significantly different interests are able to grasp the essentials - or even find a means of entry - to an unfamiliar research topic. This book investigates how information contained in multiple, overlapping images of a scene may be combined to produce images of superior quality. This offers possibilities such as noise reduction, extended field of view, blur removal, increased spatial resolution and improved dynamic range. Potential applications cover fields as diverse as forensic video restoration, remote sensing, video compression and digital video editing. The book covers two aspects that have attracted particular attention in recent years: image mosaicing, whereby multiple images are aligned to produce a large composite; and super-resolution, which permits restoration at an increased resolution of poor quality video sequences by modelling and removing imaging degradations including noise, blur and spacial-sampling. It contains a comprehensive coverage and analysis of existing techniques, and describes in detail novel, powerful and automatic algorithms (based on a robust, statistical framework) for applying mosaicing and super-resolution. The algorithms may be implemented directly from the descriptions given here. A particular feature of the techniques is that it is not necessary to know the camera parameters (such as position and focal length) in order to apply them. Throughout the book, examples are given on real image sequences, covering a variety of applications including: the separation of latent marks in forensic images; the automatic creation of 360 panoramic mosaics; and super-resolution restoration of various scenes, text, and faces in lw-quality video. |
![]() ![]() You may like...
Singular Loci of Schubert Varieties
Sara Sarason, V. Lakshmibai
Hardcover
R3,949
Discovery Miles 39 490
Algorithmic and Computer Methods for…
A.T. Fomenko, S.V. Matveev
Hardcover
R3,970
Discovery Miles 39 700
The Four-Color Theorem - History…
Rudolf Fritsch, Gerda Fritsch
Hardcover
R2,594
Discovery Miles 25 940
Mathematics of the 19th Century…
Andrei N. Kolmogorov, Adolf-Andrei P. Yushkevich
Hardcover
R3,539
Discovery Miles 35 390
|