![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Earth & environment > Earth sciences > Geology & the lithosphere
A collection of international contributions presenting current knowledge of impact tectonics, geological and geophysical investigations of terrestrial impact structures, and suggested new impact structures, resulting from the IMPACT program.
Stochastic Methods for Flow in Porous Media: Coping with
Uncertainties explores fluid flow in complex geologic environments.
The parameterization of uncertainty into flow models is important
for managing water resources, preserving subsurface water quality,
storing energy and wastes, and improving the safety and economics
of extracting subsurface mineral and energy resources. * As never seen before:
Coalbed gas has been considered a hazard since the early 19th century when the first mine gas explosions occurred in the United States in 1810 and France in 1845. In eastern Australia methane-related mine disasters occurred late in the 19th century with hundreds of lives lost in New South Wales, and as recently as 1995 in Queensland's Bowen Basin. Ventilation and gas drainage technologies are now in practice. However, coalbed methane recently is becoming more recognized as a potential source of energy; rather than emitting this gas to the atmosphere during drainage of gassy mines it can be captured and utilized. Both economic and environmental concerns have sparked this impetus to capture coalbed methane. The number of methane utilization projects has increased in the United States in recent years as a result, to a large extent, of development in technology in methane recovery from coal seams. Between 1994 and 1997, the number of mines in Alabama, Colorado, Ohio, Pennsylvania, Virginia, and West Virginia recovering and utilizing methane increased from 1 0 to 17. The Environmental Protection Agency estimates that close to 49 billion cubic feet (Bet) of methane was recovered in 1996, meaning that this amount was not released into the atmosphere. It is estimated that in the same year total emissions of methane equaled 45. 7 Bcf. Other coal mines are being investigated at present, many ofwhich appear to be promising for the development of cost-effective gas recovery.
Carbon Sequestration in Forest Ecosystems is a comprehensive book describing the basic processes of carbon dynamics in forest ecosystems, their contribution to carbon sequestration and implications for mitigating abrupt climate change. This book provides the information on processes, factors and causes influencing carbon sequestration in forest ecosystems. Drawing upon most up-to-date references, this book summarizes the current understanding of carbon sequestration processes in forest ecosystems while identifying knowledge gaps for future research, Thus, this book is a valuable knowledge source for students, scientists, forest managers and policy makers.
Over the past decade the scientific activities of the Joint Global Ocean Flux Study (JGOFS), which focuses on the role of the oceans in controlling climate change via the transport and storage of greenhouse gases and organic matter, have led to an increased interest in the study of the biogeochemistry of organic matter. There is also a growing interest in global climate fluctuations. This, and the need for a precise assessment of the dynamics of carbon and other bio-elements, has led to a demand for an improved understanding of biogeochemical processes and the chemical characteristics of both particulate and dissolved organic matter in the ocean. A large amount of proxy data has been published describing the changes of the oceanic environment, but qualitative and quantitative estimates of the vertical flux of (proxy) organic compounds have not been well documented. There is thus an urgent need to pursue this line of study and, to this end, this book starts with several papers dealing with the primary production of organic matter in the upper ocean. Thereafter, the book goes on to follow the flux and characterization of particulate organic matter, discussed in relation to the primary production in the euphotic zone and resuspension in the deep waters, including the vertical flux of proxy organic compounds. It goes on to explain the decomposition and transformation of organic matter in the ocean environment due to photochemical and biological agents, and the reactivity of bulk and specific organic compounds, including the air-sea interaction of biogenic gases. The 22 papers in the book reflect the interests of JGOFS and will thus serve as a valuable reference source for future biogeochemical investigations of both bio-elements and organic matter in seawater, clarifying the role of the ocean in global climate change.
Soil organic carbon (SOC), a key component of the global carbon (C) pool, plays an important role in C cycling, regulating climate, water supplies and biodiversity, and therefore in providing the ecosystem services that are essential to human well-being. Most agricultural soils in temperate regions have now lost as much as 60% of their SOC, and as much as 75% in tropical regions, due to conversion from natural ecosystems to agricultural uses and mainly due to continuous soil degradation. Sequestering C can help to offset C emissions from fossil fuel combustion and other C-emitting activities, while also enhancing soil quality and long-term agronomic productivity. However, developing effective policies for creating terrestrial C sinks is a serious challenge in tropical and subtropical soils, due to the high average annual temperatures in these regions. It can be accomplished by implementing improved land management practices that add substantial amounts of biomass to soil, cause minimal soil disturbance, conserve soil and water, improve soil structure, and enhance soil fauna activity. Continuous no-till crop production is arguably the best example. These soils need technically sound and economically feasible strategies to sustainably enhance their SOC pools. Hence, this book provides comprehensive information on SOC and its management in different land-use systems, with a focus on preserving soils and their ecosystem services. The only book of its kind, it offers a valuable asset for students, researchers, policymakers and other stakeholders involved in the sustainable development and management of natural resources at the global level.
This book explores the latest advances in our understanding of the evolution of the Ganga-Brahmaputra delta, examining the Damodar basin, Bhagirathi-Hooghly basin and Jalangi basin from historical, quantitative and applied geomorphology perspectives. The evolution of the Ganga-Brahmaputra delta is highly complex and remains poorly understood. To address that gap, this edited volume presents 11 research papers: the first seven chapters focus on the pure geomorphology and geohydrology of the delta, while the remaining four examine its applied geomorphological aspects. The book offers a valuable guide for geologists, geographers, hydrologists, landscape ecologists, environmentalists, engineers, planners and policy makers.
This book covers the entire spectrum of mineralogy and consolidates its applications in various fields. Its starts (Part I) with the very basic concept of mineralogy describing in detail the implications of the various aspects of mineral chemistry, crystallographic structures and their effects producing different mineral properties. Part II of the book describes different aspects of mineralogy used to extend the studies of geothermobarometry, mineral thermodynamics and phase diagrams, mineral exploration and analysis, including some aspects of marine minerals etc. The book finally handles the applications in industrial, medicinal and environmental mineralogy along with precious semiprecious stone studies. The various analytical techniques, their significance in handling specific types of mineralogical problems are also well covered.
This book documents the history of irrigated agriculture and drainage in the San Joaquin Valley, and describes the hydrology and biogeochemical processes of salts and selenium, remediation technologies for salts and trace elements and policy and management options. The contents are comprised of fourteen chapter-length independent treatises, each depicting with fresh perspective a distinctive salinity drainage topic. The opening chapters detail the evolution of irrigated agriculture, and depict the geochemical and hydrological processes that define the San Joaquin Valley, including the physics, chemistry, and biology attributes that impact water management policies and strategies. Next, the contributors address the biogeochemistry of selenium, the role of plants in absorbing it from soils, and the processes involved in retaining and concentrating dissolved salts in drainage water. Further chapters describe on-farm and plot-level irrigation provisions to reduce agricultural drainage outputs and examine their effects on plant performance. This volume offers realistic policy analysis of water management options for irrigated agriculture in the Valley and assesses their respective outcomes, if implemented. Also included is an international perspective on the sustainability of irrigated agriculture there.
This volume presentsa selection of survey and research articles based on invited lectures and contributed talks presented at the Workshop on Fluid Dynamics in Porous Media that was held in Coimbra, Portugal, inSeptember 12-14, 2011. The contributions are devoted to mathematical modeling, numerical simulation and their applications, providing the readers a state-of-the-art overview on the latest findings and new challenges on the topic. The book includes research work of worldwide recognized leaders in their respective fields and presents advances in both theory and applications, making it appealing to a vast range of audience, in particular mathematicians, engineers and physicists."
Digital Soil Mapping is the creation and the population of a geographically referenced soil database. It is generated at a given resolution by using field and laboratory observation methods coupled with environmental data through quantitative relationships. Digital soil mapping is advancing on different fronts at different rates all across the world. This book presents the state-of-the art and explores strategies for bridging research, production, and environmental application of digital soil mapping.It includes examples from North America, South America, Europe, Asia, and Australia. The chapters address the following topics: - evaluating and using legacy soil data - exploring new environmental covariates and sampling schemes - using integrated sensors to infer soil properties or status - innovative inference systems predicting soil classes, properties, and estimating their uncertainties - using digital soil mapping and techniques for soil assessment and environmental application - protocol and capacity building for making digital soil mapping operational around the globe. "
Nominated by Tsinghua University as an outstanding Ph.D. thesis, this book investigates the mechanical properties of unsaturated compacted clayey soil, the multi-field coupling consolidation theory of unsaturated soil and its application to a 261.5 m high earth-rockfill dam. It proposes a multi-field coupling analysis method of consolidation, and develops an efficient and practical finite element (FE) program for large-scale complex earth-rockfill dams. The book is primarily intended for researchers studying the multi-field coupling analysis of seepage consolidation.
Everything we see in our landscapes today was created by geological actions, all of them accompanied by earthquakes and volcanism. This thorough examination of the geology of the United States and its impact on people's lives explores the processes that shape the land surfaces of the United States. These processes act over long periods of time and are affected by such factors as wind, rain, and temperature. Readers will discover how they frequently catch us by surprise when unexpected events occur, as well as how we often ignore signals that indicate repeat disasters. The hazards associated with geological processes are a continuing concern, but readers will also discover the benefits of many of these so-called natural disasters. Geologic regions define the framework for the book. Gunn provides readers with an accessible overview of geology, defining such concepts as erosion and deposition and discussing such factors as the different kinds of rocks found in the earth's crust. He also explores the concept of plate tectonics in detail. Representative states have been selected to illustrate hazards and geologic features found over large areas, and students can discover those areas that are the most dangerous in which to live. Students are encouraged to draw on the resources provided for further in-depth study of the fascinating topics introduced and discussed.
This book presents recent research into developing and applying computational tools to estimate the performance and safety of hydraulic structures from the planning and construction stage to the service period. Based on the results of a close collaboration between the author and his colleagues, friends, students and field engineers, it shows how to achieve a good correlation between numerical computation and the actual in situ behavior of hydraulic structures. The book's heuristic and visualized style disseminates the philosophy and road map as well as the findings of the research. The chapters reflect the various aspects of the three typical and practical methods (the finite element method, the block element method, the composite element method) that the author has been working on and made essential contributions to since the 1980s. This book is an advanced continuation of Hydraulic Structures by the same author, published by Springer in 2015.
These proceedings include most of the available information on this major seismic event and its consequences. With an estimated moment magnitude of 7.7 and a heavy toll in terms of human and economic losses, it ranks as the largest intermediate-depth earthquake in Europe in the twentieth century. Nevertheless, because of the difficult conditions in the 1940s, the lessons learnt after the Vrancea earthquake were not extensively shared with the international scientific community and thus, this book fills a gap in the literature discussing the knowledge acquired after major disasters. Past experience together with current understanding of the 1940 Vrancea earthquake are presented along with the latest information on Romanian seismicity, seismic hazard and risk assessment, and seismic evaluation and rehabilitation of buildings and structures. Moreover, it includes excerpts from Romanian post-disaster reports and textbooks concerning the earthquake.
This book examines old and new data on some of the 18th and 19th century earthquakes that either occurred or were clearly felt in southern regions of Poland. Particular emphasis is put on a detailed study and reinterpretation of the unusually severe Outer Western Carpathians earthquake on December 3, 1786 (7 I0, 5.3 Mw, 35 km depth), which was the last in a series of seismic events in the years 1785 and 1786. An assessment is also made of what we presently know about the seismicity of the Western Carpathians in Poland based on to instrumental data. The book also presents material relating to earthquakes of 6-9 I0 that affected south Poland and the surrounding regions: Zilina in Slovakia (1858), Gera in Thuringia (1872), the Sudetes on the Czech-Polish border (1883, 1901), and Lower Silesia, Poland (1895). These are analyzed and illustrated by 17 contemporary macroseismic intensity maps, some of which are considered to be remarkable for those times. A new seismic catalog for Poland is provided with amendments and updates up to the end of 2014. Noteworthy is the data on two unforeseen events: one about 60 km NE of the Polish border in 2004 and one in central Poland in 2012. It shows how important it is, not least for practical engineering purposes, to perform seismic monitoring even in seemingly aseismic regions.
The completely revised and enlarged second edition of this book provides an up-to-date overview of all major topics in sedimentary geology. It is unique in its quantitative approach to denudation-accumulation systems and basin fillings, including dynamic aspects. The relationship between tectonism and basin evolution as well as the concepts of sequence cycle and event stratigraphy in various depositional environments are extensively discussed. Due to rapid progress in the past decade in the fields of sediment budget as well as sequence, cycle and event stratigraphy, a complete revision of Chapters 7, 9 and 11 was necessary. Numerous, often composite figures, a well-structured text, brief summaries in boxes, and several examples from all continents make the book an invaluable source of information for students, researchers and professors in academia as well as for professionals in the oil industry.
As the title suggests, Isotope Effects in the Chemical, Geological and Bio Sciences deals with differences in the properties of isotopically substituted molecules, such as differences in the chemical and physical properties of water and the heavy waters. Since the various fields in which isotope effects are applied do not only share fundamental principles but also experimental techniques, this book includes a discussion of experimental apparatus and experimental techniques. Isotope Effects in the Chemical, Geological and Bio Sciences is an educational monograph addressed to graduate students and others undertaking isotope effect research. The fundamental principles needed to understand isotope effects are presented in appropriate detail. While it is true that these principles are more familiar to students of physical chemistry and some background in physical chemistry is recommended, the text provides enough detail to make the book an asset to students in organic and biochemistry, and geochemistry.
In the present authors attempted to have a clear insight into the interworking of geotectonic, geomorphic, hydrologic and anthropogenic factors leading to landslide in the Shiv khola Watershed, the most worst affected region of Darjiling Himalaya. This book includes the parameters responsible for landslide events in mountainous areas. It provides knowledge and understanding to the local people, planners, and policy makers about the causes and consequences of landslides as well as provides a suitable method to mitigate the landslips. The book deals with the role of land, water and soil in landslide phenomena. These three attributes have been described in terms of critical rainfall, critical slope, critical height and changes and development of drainage network in landslides. Mitigations and site-specific management options are evaluated considering the roles of local govt., community and other organizations in both pre-slide and post-slide periods. Various scientific methods have been used to assess the landslides that will bring about tremendous help to researchers in the field. In particular, Researchers in Mountain Geomorphology and Geological and Geographical Society will get tremendous help from some topics such as 1-D slope stability model, SCS Curve Number Technique, Assessment of morphological parameters, application of RS & GIS, Application of Analytical Hierarchy Process. Semi-quantitative approach is followed for understanding spatial distribution of cohesion, friction angle slope, lithology and lineaments, drainage, upslope contributing area, land use and land cover types etc. This book also reveals some techniques and models for initiating slope instability.
Since climate and land use strongly affect the runoff pattern and intensity of solute export, it is likely that some observations and conclusions formulated on the basis of investigations carried out in forested catchment may not be fully adequate to describe controls on solute export from agricultural watersheds. The primary objective of the present research is to better understand the flow paths that affect the fluxes of dissolved compounds from a small agricultural catchment during snowmelt. This book focuses on spring snowmelt, because this is the dominant hydrological event in many moderate and high latitude catchments and, thus, is regarded as a prominent factor influencing the quality of surface waters |
You may like...
Platinum Mathematics CAPS - Grade 6…
L. Bowie, C. Gleeson-Baird, …
Paperback
(7)R233 Discovery Miles 2 330
Qualitative Theory in Structural…
Dajun Wang, Qishen WANG, …
Hardcover
R4,297
Discovery Miles 42 970
|