![]() |
![]() |
Your cart is empty |
||
Books > Earth & environment > Earth sciences > Geology & the lithosphere
The widespread mafic-ultramafic complexes in the Earth are well-known as their hosting Ni-Cu-PGE ore deposits, and their petrogenesis and mineralization have become hot issues in the geological studies. This thesis comprehensively investigated the petrology, mineralogy, geochemistry and geochronology of several mafic-ultramafic complexes in the Beishan Terrane, southern Central Asian Orogenic Belt aimed at systematically determining the mineralization and petrogenetic processes responsible for the formation of the complexes and placing constraints on the tectonic evolution of the Eastern Tianshan and Beishan, and the Early Permian mantle plume. The thesis identified mineralizing indicators of Ni-Cu sulfide deposits and defined the roles of partial melting, fractional crystallization, crustal assimilation and magma injection. The systematical isotopic compositions revealed the mantle source of the mafic-ultramafic complexes had undergone the subduction-related modifications both from the South Tianshan Ocean and subsequently the Junggar Ocean, and that the complexes were emplaced in the period of 269-285 Ma coeval with the 280 Ma mantle plume event in the Tarim Craton. The results of this thesis provide new insights about the tectonic setting, magma evolution, ore genesis, and exploration implications of the mafic-ultramafic complexes in Central Asian Orogenic Belt. Dr. Benxun Su works at the Institute of Geology and Geophysics, Chinese Academy of Sciences, China.
The book will include contributions of the state of the art of quartz raw materials (deposits and properties) and their analytics. The chapters are presented by leading scientists in the quartz field. The presentations cover the main interrelations between genesis of quartz - formation of specific properties - analytics - industrial applications of SiO2 raw materials.
This is a synthesis of several studies on fluxes of carbon, water and energy conducted in a range of European forests encompassing different climates, soils and biomes. The volume covers methodological issues, particularly the eddy covariance technique describing its limitations and practical use. Further, major insights in ecosystem processes gained through investigations in evergreen coniferous, mediterranean and broad-leaved forests are presented. In an integrated effort, atmospheric physicists, ecologists, ecosystem modellers, and remote sensing scientists elucidate the impact of terrestrial ecosystems on the global biogeochemistry of the earth.
Scientific disciplines have their own view on catastrophes. Here, natural scientists, engineers, physicians as well as historians and social scientists define and discuss geo-hazards and associated technical disasters, natural disasters as a business case, medicine and its catastrophes. After war aspects of the Shoah are described with Gershom Sholems Concept of Jewish Totality, and the situation of Displaced Persons in Germany as well as the Nakba for Palestinians related to the happiness of Jews celebrating their new State of Israel. The book also reminds of Hamburg's Flood Disaster in 1962, the Great East Japan Earthquake in 2011 and other historical catastrophes in Japan, the Lisbon earthquake in 1755 and the Age of Enlightenment, and the eruption of the Tambora in 1815 followed by the "year without summer".
Jesuits established a large number of astronomical, geophysical and
meteorological observatories during the 17th and 18th centuries and
again during the 19th and 20th centuries throughout the world. The
history of these observatories has never been published in a
complete form. Many early European astronomical observatories were
established in Jesuit colleges.
Submarine mass movements represent major offshore geohazards due
to their destructive and tsunami-generation potential. This
potential poses a threat to human life as well as to coastal,
nearshore and offshore engineering structures. Recent examples of
catastrophic submarine landslide events that affected human
populations (including tsunamis) are numerous; e.g., Nice airport
in 1979, Papua-New Guinea in 1998, Stromboli in 2002, Finneidfjord
in 1996, and the 2006 and 2009 failures in the submarine cable
network around Taiwan. The Great East Japan Earthquake in March
2011 also generated submarine landslides that may have amplified
effects of the devastating tsunami. Given that 30% of the World 's
population live within 60 km of the coast, the hazard posed by
submarine landslides is expected to grow as global sea level rises.
This elevated awareness of the need for better understanding of
underwater landslides is coupled with great advances in underwater
mapping, sampling and monitoring technologies, laboratory analogue
and numerical modeling capabilities developed over the past two
decades. Multibeam sonar, 3D seismic reflection, and remote and
autonomous underwater vehicle technologies provide hitherto
unparalleled imagery of the geology beneath the oceans, permitting
investigation of submarine landslide deposits in great detail.
Increased and new access to drilling, coring, in situ measurements
and monitoring devices allows for ground-thruthing geophysical
data, provides access to samples for geotechnical laboratory
experiments and unprecedented in situ information on strength and
effective stress conditions of underwater slopes susceptible to
fail. Great advances in numerical simulation of submarine landslide
kinematics and tsunami propagation, particularly since the 2004
Sumatra tsunami, have also lead to increased understanding and
predictability of submarine landslide consequences.
This thesis addresses karst development in a terrain characterized by a highly complex geological and geomorphological evolution. It tackles the extent and complexity of both epigenic and hypogenic karst development, based on morphological analyses of caves, combined with analyses and datations of cave sediments and their correlation to regional geological and geomorphological evolution. Hypogenic karst registered is mainly the result of hydrothermal speleogenesis due to increased geothermal gradient in connection with nearby Pliocene-Pleistocene volcanic centers, with occurrence of sulfuric acid speleogenesis and ghost-rock weathering due to local geological or lithological control. Epigenic speleogenesis is strongly controlled by base level oscillations, with also examples of deep phreatic (now fossil) caves connected to regional base level rise, and per-ascensum speleogenesis. Another important finding is the constraining of the timing of Mariovo Lake draining in the Pleistocene, an important event in order to understand the geomorphological evolution in Macedonia, as it led to the onset of fluvial development and incision of valleys, shaping most of the present morphology.
These proceedings comprise the peer-reviewed contributions submitted to the 11th International Congress for Applied Mineralogy (ICAM) held July 5-10, 2013, at the Southwest University of Science and Technology (SWUST) in Mianyang, China. The biennial ICAM is the most important gathering of applied mineralogists, organized every other year by the ICAM-Council. The multidisciplinary research presented in this book will be of interest to scientists and professionals dealing with topics like environmental and medical mineralogy; industrial minerals; bio-minerals and biomaterials; advanced materials; process mineralogy; mining and metallurgy; cultural heritage; the interaction of minerals with microorganisms; and solid waste treatment and recycling, including genetic mineralogy. "The field of applied mineralogy has been able to match society's pace by continuously reinventing itself, quickly adopting new technologies and instrumentation as they became available and putting them to work for the service of mankind living in a world that heavily relies on minerals. Over the past few decades, applied mineralogy has evolved into a cutting- edge discipline that leads the way for science, engineering and research and development to benefit society. Contrary to popular belief, mineral resources are limited, and we have an obligation to our heirs to use them responsibly." Dr. Maarten A.T.M. Broekmans Post-President ICAM Council
Soil organic carbon (SOC), a key component of the global carbon (C) pool, plays an important role in C cycling, regulating climate, water supplies and biodiversity, and therefore in providing the ecosystem services that are essential to human well-being. Most agricultural soils in temperate regions have now lost as much as 60% of their SOC, and as much as 75% in tropical regions, due to conversion from natural ecosystems to agricultural uses and mainly due to continuous soil degradation. Sequestering C can help to offset C emissions from fossil fuel combustion and other C-emitting activities, while also enhancing soil quality and long-term agronomic productivity. However, developing effective policies for creating terrestrial C sinks is a serious challenge in tropical and subtropical soils, due to the high average annual temperatures in these regions. It can be accomplished by implementing improved land management practices that add substantial amounts of biomass to soil, cause minimal soil disturbance, conserve soil and water, improve soil structure, and enhance soil fauna activity. Continuous no-till crop production is arguably the best example. These soils need technically sound and economically feasible strategies to sustainably enhance their SOC pools. Hence, this book provides comprehensive information on SOC and its management in different land-use systems, with a focus on preserving soils and their ecosystem services. The only book of its kind, it offers a valuable asset for students, researchers, policymakers and other stakeholders involved in the sustainable development and management of natural resources at the global level.
Soil enzymes play a fundamental role in many soil processes such as the mineralization of organic matter, the synthesis of humic substances, the degradation of xenobiotics or the mechanisms involved in the biocontrol of plant pathogens. Their direct link with soil microorganisms gives them a key role as biomonitors of the evolution of soil quality or in the monitoring of the application of organic amendments to degraded soils. As a consequence of the importance of soil enzymes on soil processes, there is an increasing interest in their study, as well as in the application of molecular techniques as diagnostic tools.
Irregular engineering structures are subjected to complicated additional loads which are often beyond conventional design models developed for traditional, simplified plane models. This book covers detailed research and recent progress in seismic engineering dealing with seismic behaviour of irregular and set-back engineering structures. Experimental results as well as special topics of modern design are discussed in detail. In addition, recent progress in seismology, wave propagation and seismic engineering, which provides novel, modern modelling of complex seismic loads, is reported. Particular emphasis is placed on the newly developed rotational, seismic ground-motion effects. This book is a continuation of an earlier monograph which appeared in the same Springer series in 2013 (http://www.springer.com/gp/book/9789400753761).
This monograph examines the mineralogy of illite, the most common clay mineral, as a unifying theme for understanding problems of the surface environment and environmental change. The volume begins with a careful analysis of the structure and transformation of illite. Using illite as the frame, the authors describe problems in soil chemistry, clay stability and clay kinetics in sedimentary rocks.
This book focuses on sediments as a pollutant in natural freshwater and marine habitats, and as a vector for the transfer of chemicals such as nutrients and contaminants. Sediment-water research is carried out all over the world within a variety of disciplines. The selected papers cover three main topics: - assessment and/or restoration of disturbed watersheds;- sediment-water linkages in terrestrial and aquatic environments;- evaluation of sediment and ecological changes in marine and freshwater habitats.Innovative research in both developed and less developed countries is included and both fundamental research and insight into applied research and system management are covered
These proceedings include most of the available information on this major seismic event and its consequences. With an estimated moment magnitude of 7.7 and a heavy toll in terms of human and economic losses, it ranks as the largest intermediate-depth earthquake in Europe in the twentieth century. Nevertheless, because of the difficult conditions in the 1940s, the lessons learnt after the Vrancea earthquake were not extensively shared with the international scientific community and thus, this book fills a gap in the literature discussing the knowledge acquired after major disasters. Past experience together with current understanding of the 1940 Vrancea earthquake are presented along with the latest information on Romanian seismicity, seismic hazard and risk assessment, and seismic evaluation and rehabilitation of buildings and structures. Moreover, it includes excerpts from Romanian post-disaster reports and textbooks concerning the earthquake.
The term Little Ice Age' was originally used by glaciologists to describe the most recent major glacial advance of the Holocene. Subsequently, the Little Ice Age' has come to be associated with a period of advances of European glaciers between about 1450 to 1850, as well as with relatively cooler temperatures. The issue of whether or not this concept remains accurate is a major theme of many of the papers included in this volume. The main geographical focus is on the North Atlantic and European sectors, and includes research from a number of different palaeoclimatic fields. Examples are the use of documentary sources, early instrumental records, grain-harvest data, fossil-insect data, ice-core records, glacial evidence, lichenometry, synoptic climatology, and also the human dimensions of climate change. The papers presented reflect state-of-the-art knowledge, as well as thought-provoking new insights into these subject areas. The book will be of value to all those interested in the above topics and in the overall themes of climate variability and global change.
This book provides two state-of-the-art quantitative techniques to determine ultra-trace rare earth elements (REEs) in natural carbonates using solution nebulization-inductively coupled plasma mass spectrometry (SN-ICPMS) and laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS) with respective applications were presented in this dissertation. These techniques were applied to natural carbonates, including corals and stalagmites, to understand volcano eruptions and the impacts on modern biosystem and paleoclimate regimes. In the first SN-ICPMS protocol, direct measurements for femtogram quantity carbonate samples without chemical separation steps can offer accurate and high-precision analysis (+/-1.9-6.5%, 2 ) with a high sample throughput of 8-10 samples/hr routinely. Application to modern Porites corals collected from South China Sea region, the anomalies of REE contents and Al/Ca ratios associated with micro-domain images, register modern coral reefs could be exacerbated by volcanic eruptions. In the second protocol, a high-sensitivity quantitative open-cell LA-ICPMS technique has been established to allow direct sampling on stalagmite surface in the atmospheric air. This technique improved limits of detection down to sub-ng/g range and promises analyses of carbonate REE profiles at the single digit parts-per-billion (ppb) levels. Application to a 15-cm stalagmite collected from East Timor reveals two peaks of REE contents by at least one order of magnitude, possibly due to volcanic ash preserved in stalagmite. Both improved SN-ICPMS and LA-ICPMS techniques highlight the high-sensitivity and high-temporal-resolution carbonate REE analyses for corals and stalagmites, with great potential to other natural carbonates such as travertine, tufa, and flowstone, benefit our understanding of paleoclimatic and paleoenvironmental dynamics.
This book covers the entire spectrum of mineralogy and consolidates its applications in various fields. Its starts (Part I) with the very basic concept of mineralogy describing in detail the implications of the various aspects of mineral chemistry, crystallographic structures and their effects producing different mineral properties. Part II of the book describes different aspects of mineralogy used to extend the studies of geothermobarometry, mineral thermodynamics and phase diagrams, mineral exploration and analysis, including some aspects of marine minerals etc. The book finally handles the applications in industrial, medicinal and environmental mineralogy along with precious semiprecious stone studies. The various analytical techniques, their significance in handling specific types of mineralogical problems are also well covered.
Land use decisions in karst terrains can have immediate and serious impacts on the local landscape and groundwater resources. The existing literature on karst and land use can be very difficult to locate in the journals of any of a half-dozen different disciplines. This book brings the interdisciplinary knowledge together in one place, in a format that academics and professionals alike will find accessible, informative and useful. Based on an examination of existing regulations, the experiences and opinions of planners and land use professionals, and quantitative analysis of publicly-available data, the book explores how human settlement patterns and urban systems in karst terrains are affected by land use regulations intended to protect karst resources. The book pays particular attention to the questions of whether these regulations will have a noticeable impact on density and on opportunities for economic growth and development in communities that choose to implement them. This analysis serves as the basis for a regulatory framework that may be used to understand the workings of land use regulations in karst terrains, and to aid in the development of such regulations in the future.
Most of the Earth's biosphere is characterized by low temperatures. Vast areas (>20%) of the soil ecosystem are permanently frozen or are unfrozen for only a few weeks in summer. Permafrost regions occur at high latitudes and also at high ele- tions; a significant part of the global permafrost area is represented by mountains. Permafrost soils are of global interest, since a significant increase in temperature is predicted for polar regions. Global warming will have a great impact on these soils, especially in northern regions, since they contain large amounts of organic carbon and act as carbon sinks, and a temperature increase will result in a release of carbon into the atmosphere. Additionally, the intensified release of the clima- relevant tracer gas methane represents a potential environmental harzard. Significant numbers of viable microorganisms, including bacteria, archaea, p- totrophic cyanobacteria and green algae, fungi and protozoa, are present in per- frost, and the characteristics of these microorganisms reflect the unique and extreme conditions of the permafrost environment. Remarkably, these microorg- isms have been reported to be metabolically active at subzero temperatures, even down to ?20 DegreesC.
A collection of international contributions presenting current knowledge of impact tectonics, geological and geophysical investigations of terrestrial impact structures, and suggested new impact structures, resulting from the IMPACT program.
Coalbed gas has been considered a hazard since the early 19th century when the first mine gas explosions occurred in the United States in 1810 and France in 1845. In eastern Australia methane-related mine disasters occurred late in the 19th century with hundreds of lives lost in New South Wales, and as recently as 1995 in Queensland's Bowen Basin. Ventilation and gas drainage technologies are now in practice. However, coalbed methane recently is becoming more recognized as a potential source of energy; rather than emitting this gas to the atmosphere during drainage of gassy mines it can be captured and utilized. Both economic and environmental concerns have sparked this impetus to capture coalbed methane. The number of methane utilization projects has increased in the United States in recent years as a result, to a large extent, of development in technology in methane recovery from coal seams. Between 1994 and 1997, the number of mines in Alabama, Colorado, Ohio, Pennsylvania, Virginia, and West Virginia recovering and utilizing methane increased from 1 0 to 17. The Environmental Protection Agency estimates that close to 49 billion cubic feet (Bet) of methane was recovered in 1996, meaning that this amount was not released into the atmosphere. It is estimated that in the same year total emissions of methane equaled 45. 7 Bcf. Other coal mines are being investigated at present, many ofwhich appear to be promising for the development of cost-effective gas recovery.
Carbon Sequestration in Forest Ecosystems is a comprehensive book describing the basic processes of carbon dynamics in forest ecosystems, their contribution to carbon sequestration and implications for mitigating abrupt climate change. This book provides the information on processes, factors and causes influencing carbon sequestration in forest ecosystems. Drawing upon most up-to-date references, this book summarizes the current understanding of carbon sequestration processes in forest ecosystems while identifying knowledge gaps for future research, Thus, this book is a valuable knowledge source for students, scientists, forest managers and policy makers.
Everything we see in our landscapes today was created by geological actions, all of them accompanied by earthquakes and volcanism. This thorough examination of the geology of the United States and its impact on people's lives explores the processes that shape the land surfaces of the United States. These processes act over long periods of time and are affected by such factors as wind, rain, and temperature. Readers will discover how they frequently catch us by surprise when unexpected events occur, as well as how we often ignore signals that indicate repeat disasters. The hazards associated with geological processes are a continuing concern, but readers will also discover the benefits of many of these so-called natural disasters. Geologic regions define the framework for the book. Gunn provides readers with an accessible overview of geology, defining such concepts as erosion and deposition and discussing such factors as the different kinds of rocks found in the earth's crust. He also explores the concept of plate tectonics in detail. Representative states have been selected to illustrate hazards and geologic features found over large areas, and students can discover those areas that are the most dangerous in which to live. Students are encouraged to draw on the resources provided for further in-depth study of the fascinating topics introduced and discussed. |
![]() ![]() You may like...
Best Practices for the Use of Simulation…
Bastien Chapuis, Pierre Calmon, …
Hardcover
R1,597
Discovery Miles 15 970
Understanding Viscoelasticity - An…
Nhan Phan-Thien, Nam Mai-Duy
Hardcover
R3,363
Discovery Miles 33 630
Computational Modeling, Optimization and…
Pablo Andres Munoz-Rojas
Hardcover
R5,206
Discovery Miles 52 060
|