![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > History of mathematics
In recognition of professor Shiing-Shen Chern s long and distinguished service to mathematics and to the University of California, the geometers at Berkeley held an International Symposium in Global Analysis and Global Geometry in his honor in June 1979. The output of this Symposium was published in a series of three separate volumes, comprising approximately a third of Professor Chern s total publications up to 1979. Later, a fourth volume was published, focusing on papers written during the Eighties. This first volume comprises selected papers written between 1932 and 1975. In making the selections, Professor Chern gave preference to shorter and lesser-known papers."
In recognition of professor Shiing-Shen Chern's long and distinguished service to mathematics and to the University of California, the geometers at Berkeley held an International Symposium in Global Analysis and Global Geometry in his honor in June 1979. The output of this Symposium was published in a series of three separate volumes, comprising approximately a third of Professor Chern's total publications up to 1979. Later, this fourth volume was published, focusing on papers written during the Eighties.
Leon Battista Alberti was an outstanding polymath of the fifteenth century, alongside Piero della Francesca and before Leonardo da Vinci. While his contributions to architecture and the visual arts are well known and available in good English editions, and much of his literary and social writings are also available in English, his mathematical works are not well represented in readily available, accessible English editions have remained accessible only to specialists. The four treatises included here - Ludi matematici, De Componendis Cifris, Elementi di pittura and De lunularum quadratura - are extremely valuable in rounding out the portrait of this multitalented thinker. The treatises are presented in modern English translations, with commentary that is intended to make evident the depths of Alberti's knowledge as well as address the treatises' mathematical, historical and cultural context, their classical Greek roots, and their relationship to later works by Renaissance thinkers.
This is a collection of Harald Cramer's extensive work on number theory, probability, mathematical statistics and insurance mathematics. Many of these are not easily found in their original sources nowadays, for instance his pioneering work on risk theory published in the Skandia Insurance Company's jubilee volumes in 1930 and 1955. Despite their age, these eminent examples of Cramer's expository style remain highly readable. Cramer was one of the "fathers" of modern mathematical statistics. His famous book on the subject is still an important reference. His statistical papers included here were seminal to the subsequent development of the subject. The collection includes a complete bibliography of Cramer's work.
The Origins of Husserl's Totalizing Act At noon on Monday, October 24th, 1887, Dr. Edmund G. Husserl defended the dissertation that would qualify him as a university lecturer at Halle. Entitled "On the Concept of Number," it was written under Carl Stumpf who, like Husserl, had been a student of Franz Brentano. In this, his first published philosophical work, Husserl sought to secure the foundations of mathematics by deriving its most fundamental concepts from psychical acts. In the same year, Heinrich Hertz published an article entitled, "Con cerning an Influence of Ultraviolet Light on the Electrical Discharge." The article detailed his discovery of a new "relation between two entirely different forces," those of light and electricity. Hermann von Helmholtz, whose theory guided Hertz's initial research, called it the "most important physical discovery of the century," and Hertz became an immediate sensation. He lectured on his discovery in 1889 before a general session of the German Association meeting in Heidelberg. In this lecture that, as he wrote beforehand to Emil Cohn, he was deter mined should not be "entirely unintelligible to the laity," Hertz explained that light ether and electro-magnetic forces were interdependent. He went on to tell his audience that they need not expect their senses to grant them access to these phenomena. Indeed, he said, the latter are not only insusceptible of sense perception, but are false from the standpoint of the senses."
Thomas Hankins and Robert Silverman investigate an array of instruments from the seventeenth through the nineteenth century that seem at first to be marginal to science--magnetic clocks that were said to operate by the movements of sunflower seeds, magic lanterns, ocular harpsichords (machines that played different colored lights in harmonious mixtures), Aeolian harps (a form of wind chime), and other instruments of "natural magic" designed to produce wondrous effects. By looking at these and the first recording instruments, the stereoscope, and speaking machines, the authors show that "scientific instruments" first made their appearance as devices used to evoke wonder in the beholder, as in works of magic and the theater. The authors also demonstrate that these instruments, even though they were often "tricks," were seen by their inventors as more than trickery. In the view of Athanasius Kircher, for instance, the sunflower clock was not merely a hoax, but an effort to demonstrate, however fraudulently, his truly held belief that the ability of a flower to follow the sun was due to the same cosmic magnetic influence as that which moved the planets and caused the rotation of the earth. The marvels revealed in this work raise and answer questions about the connections between natural science and natural magic, the meaning of demonstration, the role of language and the senses in science, and the connections among art, music, literature, and natural science. Originally published in 1999. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These paperback editions preserve the original texts of these important books while presenting them in durable paperback editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
This two volume set presents over 50 of the most groundbreaking contributions of Menahem M Schiffer. All of the reprints of Schiffer's works herein have extensive annotation and invited commentaries, giving new clarity and insight into the impact and legacy of Schiffer's work. A complete bibliography and brief biography make this a rounded and invaluable reference.
Apollonius's Conics was one of the greatest works of advanced mathematics in antiquity. The work comprised eight books, of which four have come down to us in their original Greek and three in Arabic. By the time the Arabic translations were produced, the eighth book had already been lost. In 1710, Edmond Halley, then Savilian Professor of Geometry at Oxford, produced an edition of the Greek text of the Conics of Books I-IV, a translation into Latin from the Arabic versions of Books V-VII, and a reconstruction of Book VIII. The present work provides the first complete English translation of Halley's reconstruction of Book VIII with supplementary notes on the text. It also contains 1) an introduction discussing aspects of Apollonius's Conics 2) an investigation of Edmond Halley's understanding of the nature of his venture into ancient mathematics, and 3) an appendices giving a brief account of Apollonius's approach to conic sections and his mathematical techniques. This book will be of interest to students and researchers interested in the history of ancient Greek mathematics and mathematics in the early modern period.
The astonishing variety and beauty of mathematical elements in stamp design is brought to life in this collection of more than 350 stamps, illustrated with mathematical figures, people, and content, each reproduced in enlarged format, in full color. It's a perfect gift book for anyone interested in stamps, or in the surprising use of mathematics in the real world. The author is widely known in the math community for his regular column on stamps in the magazine The Mathematical Intelligencer.
Emmy Noether (1882-1935) was one of the most influential mathematicians of the 20th century. The development of abstract algebra, which is one of the most distinctive innovations of 20th century mathematics, can largely be traced back to her - in her published papers, lectures and her personal influence on her contemporaries. By now her contributions have become so thoroughly absorbed into our mathematical culture that only rarely are they specifically attributed to her. This book presents an extensive collection of her work. Albert Einstein wrote in a letter to the New York Times of May 1st, 1935: "In the judgment of the most competent living mathematicians, Fraulein Noether was the most significant creative mathematical genius thus far produced since the higher education of women began. In the realm of algebra, in which the most gifted mathematicians have been busy for centuries, she discovered methods which have proved of enormous importance in the development of the present-day younger generation of mathematicians." Emmy Noether leistete grundlegende Arbeiten zur Abstrakten Algebra. Ihre Auffassung von Mathematik war sehr nutzlich fur die damalige Physik, aber wurde auch kontrovers diskutiert. Die Debatte ging darum, ob Mathematik eher konzeptuell und abstract (intuitionistisch) oder mehr physikalisch basiert und angewandt (konstruktionistisch) sein sollte. Noethers konzeptuelle Auffassung der Algebra fuhrte zu neuen Grundlagen, die Algebra, Geometrie, Lineare Algebra, Topologie und Logik vereinheitlichten."
In recognition of professor Shiing-Shen Chern's long and distinguished service to mathematics and to the University of California, the geometers at Berkeley held an International Symposium in Global Analysis and Global Geometry in his honor in June 1979. The output of this Symposium was published in a series of three separate volumes, comprising approximately a third of Professor Chern's total publications up to 1979. Later, a fourth volume was published, focusing on papers written during the Eighties. This third volume comprises selected papers written between 1965 and 1979.
The last one hundred years have seen many important achievements in the classical part of number theory. After the proof of the Prime Number Theorem in 1896, a quick development of analytical tools led to the invention of various new methods, like Brun's sieve method and the circle method of Hardy, Littlewood and Ramanujan; developments in topics such as prime and additive number theory, and the solution of Fermat s problem. Rational Number Theory in the 20th Century: From PNT to FLT offers a short survey of 20th century developments in classical number theory, documenting between the proof of the Prime Number Theorem and the proof of Fermat's Last Theorem. The focus lays upon the part of number theory that deals with properties of integers and rational numbers. Chapters are divided into five time periods, which are then further divided into subject areas. With the introduction of each new topic, developments are followed through to the present day. This book will appeal to graduate researchers and student in number theory, however the presentation of main results without technicalities will make this accessible to anyone with an interest in the area."
This monograph is concerned with the fitting of linear relationships in the context of the linear statistical model. As alternatives to the familiar least squared residuals procedure, it investigates the relationships between the least absolute residuals, the minimax absolute residual and the least median of squared residuals procedures. It is intended for graduate students and research workers in statistics with some command of matrix analysis and linear programming techniques.
During his lifetime, Henri Poincare published three major philosophical books which achieved great success: "La science et l'hypothese" (1902), "La valeur de la science" (1905) and "Science et methode" (1908). After his death in 1913, a fourth volume of his philosophical works was published by his heirs as "Dernieres pensees" (1913). The four books constitute the core of Poincare's philosophic works and were given an ovation by scientific and general public. Around 1919, Gustave Le Bon wrote to Poincare's widow. As the director of the "Bibliotheque de Philosophie Scientifique at Flammarion," he asked her permission to publish a second posthumous volume. "L'Opportunisme scientifique" was intended to be the fifth and final volume of Poincare's philosophical writings. Louis Rougier had elaborated the project, with the collaboration of Gustave Le Bon, and the approval of the philosopher Emile Boutroux and his son Pierre. Because of the reservations of the mathematician's heirs, this book was never published and Dernieres pensees remained his last philosophical book. Nevertheless Poincare's correspondence - which is kept in the Poincare Archives at University Nancy 2 - contains a large amount of documents concerning the project, its justification and the discussions between Louis Rougier and the mathematician's heirs. The aim of this book is to restore this episode, which gives some crucial informations about editorial practices of Poincare and about the posterity of his philosophic thinking."
L.E.J. Brouwer (1881-1966) is best known for his revolutionary ideas on topology and foundations of mathematics (intuitionism). The present collection contains a mixture of letters; university and faculty correspondence has been included, some of which shed light on the student years, and in particular on the exchange of letters with his PhD adviser, Korteweg. Acting as the natural sequel to the publication of Brouwer's biography, this book provides instrumental reading for those wishing to gain a deeper understanding of Brouwer and his role in the twentieth century. Striking a good balance of biographical and scientific information, the latter deals with innovations in topology (Cantor-Schoenflies style and the new topology) and foundations. The topological period in his research is well represented in correspondence with Hilbert, Schoenflies, Poincare, Blumenthal, Lebesgue, Baire, Koebe, and foundational topics are discussed in letters exchanged with Weyl, Fraenkel, Heyting, van Dantzig and others. There is also a large part of correspondence on matters related to the interbellum scientific politics. This book will appeal to both graduate students and researchers with an interest in topology, the history of mathematics, the foundations of mathematics, philosophy and general science.
A glorious period of Hungarian mathematics started in 1900 when Lipot Fejer discovered the summability of Fourier series.This was followed by the discoveries of his disciples in Fourier analysis and in the theory of analytic functions. At the same time Frederic (Frigyes) Riesz created functional analysis and Alfred Haar gave the first example of wavelets. Later the topics investigated by Hungarian mathematicians broadened considerably, and included topology, operator theory, differential equations, probability, etc. The present volume, the first of two, presents some of the most remarkable results achieved in the twentieth century by Hungarians in analysis, geometry and stochastics. The book is accessible to anyone with a minimum knowledge of mathematics. It is supplemented with an essay on the history of Hungary in the twentieth century and biographies of those mathematicians who are no longer active. A list of all persons referred to in the chapters concludes the volume. "
This systematic and historical treatment of Russell's contributions to analytic philosophy, from his embrace of analysis in 1898 to his landmark theory of descriptions in 1905, draws important connections between his philosophically motivated conception of analysis and the technical apparatus he devised to facilitate analyses in mathematics
In 1915 and 1916 Emmy Noether was asked by Felix Klein and David Hilbert to assist them in understanding issues involved in any attempt to formulate a general theory of relativity, in particular the new ideas of Einstein. She was consulted particularly over the difficult issue of the form a law of conservation of energy could take in the new theory, and she succeeded brilliantly, finding two deep theorems. But between 1916 and 1950, the theorem was poorly understood and Noether's name disappeared almost entirely. People like Klein and Einstein did little more then mention her name in the various popular or historical accounts they wrote. Worse, earlier attempts which had been eclipsed by Noether's achievements were remembered, and sometimes figure in quick historical accounts of the time. This book carries a translation of Noether's original paper into English, and then describes the strange history of its reception and the responses to her work. Ultimately the theorems became decisive in a shift from basing fundamental physics on conservations laws to basing it on symmetries, or at the very least, in thoroughly explaining the connection between these two families of ideas. The real significance of this book is that it shows very clearly how long it took before mathematicians and physicists began to recognize the seminal importance of Noether's results. This book is thoroughly researched and provides careful documentation of the textbook literature. Kosmann-Schwarzbach has thus thrown considerable light on this slow dance in which the mathematical tools necessary to study symmetry properties and conservation laws were apparently provided long before the orchestra arrives and the party begins."
The work of Professor Eduard Cech had a si~ificant influence on the development of algebraic and general topology and differential geometry. This book, which appears on the occasion of the centenary of Cech's birth, contains some of his most important papers and traces the subsequent trends emerging from his ideas. The body of the book consists of four chapters devoted to algebraic topology, Cech-Stone compactification, dimension theory and differential geometry. Each of these includes a selection of Cech's papers, a brief summary of some results which followed from his work or constituted solutions to the problems he posed, and several selected papers by various authors concerning the areas of study he initiated. The book also contains a concise biography borrowed with minor changes from the book Topological papers of E. tech, a list of Cech's publications and a very brief note on his activity in the didactics of mathematics. The editors wish to express their sincere gratitude to all who contributed to the completion and publication of this book.
A unique series of fascinating research papers on subjects related to the work of Niels Henrik Abel, written by some of the foremost specialists in their fields. Some of the authors have been specifically invited to present papers, discussing the influence of Abel in a mathematical-historical context. Others have submitted papers presented at the Abel Bicentennial Conference, Oslo June 3-8, 2002. The idea behind the book has been to produce a text covering a substantial part of the legacy of Abel, as perceived at the beginning of the 21st century.
This study discusses the history of the central limit theorem and related probabilistic limit theorems from about 1810 through 1950. In this context the book also describes the historical development of analytical probability theory and its tools, such as characteristic functions or moments. The central limit theorem was originally deduced by Laplace as a statement about approximations for the distributions of sums of independent random variables within the framework of classical probability, which focused upon specific problems and applications. Making this theorem an autonomous mathematical object was very important for the development of modern probability theory.
The implicit function theorem is part ofthe bedrock of mathematical analysis and geometry. Finding its genesis in eighteenth century studies of real analytic functions and mechanics, the implicit and inverse function theorems have now blossomed into powerful tools in the theories of partial differential equations, differential geometry, and geometric analysis. There are many different forms of the implicit function theorem, including (i) the classical formulation for"Ck"functions, (ii) formulations in other function spaces, (iii) formulations for non-smooth function, and (iv) formulations for functions with degenerate Jacobian. Particularly powerful implicit function theorems, such as the Nash Moser theorem, have been developed for specific applications (e.g., the imbedding of Riemannian manifolds). All of these topics, and many more, are treated in the present uncorrected reprint of this classicmonograph. Originally published in 2002, "The Implicit Function Theorem"is an accessible and thorough treatment of implicit and inverse function theorems and their applications. It will be of interest to mathematicians, graduate/advanced undergraduate students, and to those who apply mathematics. The book unifies disparate ideas that have played an important role in modern mathematics. It serves to document and placein context a substantial body of mathematical ideas. "
The editors of the present series had originally intended to publish an integrated work on the history of mathematics in the nineteenth century, passing systemati cally from one discipline to another in some natural order. Circumstances beyond their control, mainly difficulties in choosing authors, led to the abandonment of this plan by the time the second volume appeared. Instead of a unified mono graph we now present to the reader a series of books intended to encompass all the mathematics of the nineteenth century, but not in the order of the accepted classification of the component disciplines. In contrast to the first two books of The Mathematics of the Nineteenth Century, which were divided into chapters, this third volume consists of four parts, more in keeping with the nature of the publication. 1 We recall that the first book contained essays on the history of mathemati 2 cal logic, algebra, number theory, and probability, while the second covered the history of geometry and analytic function theory. In the present third volume the reader will find: 1. An essay on the development of Chebyshev's theory of approximation of functions, later called "constructive function theory" by S. N. Bernshtein. This highly original essay is due to the late N. I. Akhiezer (1901-1980), the author of fundamental discoveries in this area. Akhiezer's text will no doubt attract attention not only from historians of mathematics, but also from many specialists in constructive function theory."
The significance of foundational debate in mathematics that took place in the 1920s seems to have been recognized only in circles of mathematicians and philosophers. A period in the history of mathematics when mathematics and philosophy, usually so far away from each other, seemed to meet. The foundational debate is presented with all its brilliant contributions and its shortcomings, its new ideas and its misunderstandings.
|
![]() ![]() You may like...
Mathematics of Multidimensional Fourier…
Richard Tolimieri, Myong An, …
Hardcover
R2,586
Discovery Miles 25 860
Introduction to Electro-optical Imaging…
Khalil Seyrafi, S.A. Hovanessian
Hardcover
R4,024
Discovery Miles 40 240
The Wigner Distribution - Theory and…
W. Mecklenbrauker, Franz Hlawatsch
Hardcover
R7,495
Discovery Miles 74 950
Advanced Digital Signal Processing: From…
Edmond Thor
Hardcover
Adaptive Control, Filtering, and Signal…
K.J. Astroem, G.C. Goodwin, …
Hardcover
R4,591
Discovery Miles 45 910
|