![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > History of mathematics
This book presents new insights into Leibniz's research on planetary theory and his system of pre-established harmony. Although some aspects of this theory have been explored in the literature, others are less well known. In particular, the book offers new contributions on the connection between the planetary theory and the theory of gravitation. It also provides an in-depth discussion of Kepler's influence on Leibniz's planetary theory and more generally, on Leibniz's concept of pre-established harmony. Three initial chapters presenting the mathematical and physical details of Leibniz's works provide a frame of reference. The book then goes on to discuss research on Leibniz's conception of gravity and the connection between Leibniz and Kepler.
The book aims to provide an overview of the state of the art on the mechanics of arches and masonry structures. It is addressed to an international audience, arising from the international context in which the Associazione Edoardo Benvenuto has carried out its activities in recent years, under the honorary presidency of Jacques Heyman. The book belongs to the collection Between Mechanics and Architecture, born in 1995 from the collaboration of several renowned scholars, including Edoardo Benvenuto (P. Radelet-de Grave, E. Benvenuto (eds.), Entre Mecanique et Architecture / Between Mechanics and Architecture, Birkhauser, Basel 1995).
This book presents a historical and scientific analysis as historical epistemology of the science of weights and mechanics in the sixteenth century, particularly as developed by Tartaglia in his Quesiti et inventioni diverse, Book VII and Book VIII (1546; 1554). In the early 16th century mechanics was concerned mainly with what is now called statics and was referred to as the Scientia de ponderibus, generally pursued by two very different approaches. The first was usually referred to as Aristotelian, where the equilibrium of bodies was set as a balance of opposite tendencies to motion. The second, usually referred to as Archimedean, identified statics with centrobarica, the theory of centres of gravity based on symmetry considerations. In between the two traditions the Italian scholar Niccolo Fontana, better known as Tartaglia (1500?-1557), wrote the treatise Quesiti et inventioni diverse (1546). This volume consists of three main parts. In the first, a historical excursus regarding Tartaglia's lifetime, his scientific production and the Scientia de ponderibus in the Arabic-Islamic culture, and from the Middle Ages to the Renaissance, is presented. Secondly, all the propositions of Books VII and VIII, by relating them with the Problemata mechanica by the Aristotelian school and Iordani opvsculvm de ponderositate by Jordanus de Nemore are examined within the history and historical epistemology of science. The last part is relative to the original texts and critical transcriptions into Italian and Latin and an English translation. This work gathers and re-evaluates the current thinking on this subject. It brings together contributions from two distinguished experts in the history and historical epistemology of science, within the fields of physics, mathematics and engineering. It also gives much-needed insight into the subject from historical and scientific points of view. The volume composition makes for absorbing reading for historians, epistemologists, philosophers and scientists.
This book traces the history of the concept of work from its earliest stages and shows that its further formalization leads to equilibrium principle and to the principle of virtual works, and so pointing the way ahead for future research and applications. The idea that something remains constant in a machine operation is very old and has been expressed by many mathematicians and philosophers such as, for instance, Aristotle. Thus, a concept of energy developed. Another important idea in machine operation is Archimedes' lever principle. In modern times the concept of work is analyzed in the context of applied mechanics mainly in Lazare Carnot mechanics and the mechanics of the new generation of polytechnical engineers like Navier, Coriolis and Poncelet. In this context the word "work" is finally adopted. These engineers are also responsible for the incorporation of the concept of work into the discipline of economics when they endeavoured to combine the study of the work of machines and men together.
The discovery of a gradual acceleration in the moon's mean motion by Edmond Halley in the last decade of the seventeenth century led to a revival of interest in reports of astronomical observations from antiquity. These observations provided the only means to study the moon's 'secular acceleration', as this newly-discovered acceleration became known. This book contains the first detailed study of the use of ancient and medieval astronomical observations in order to investigate the moon's secular acceleration from its discovery by Halley to the establishment of the magnitude of the acceleration by Richard Dunthorne, Tobias Mayer and Jerome Lalande in the 1740s and 1750s. Making extensive use of previously unstudied manuscripts, this work shows how different astronomers used the same small body of preserved ancient observations in different ways in their work on the secular acceleration. In addition, this work looks at the wider context of the study of the moon's secular acceleration, including its use in debates of biblical chronology, whether the heavens were made up of aether, and the use of astronomy in determining geographical longitude. It also discusses wider issues of the perceptions and knowledge of ancient and medieval astronomy in the early-modern period. This book will be of interest to historians of astronomy, astronomers and historians of the ancient world.
A companion publication to the international exhibition "Transcending Tradition: Jewish Mathematicians in German-Speaking Academic Culture", the catalogue explores the working lives and activities of Jewish mathematicians in German-speaking countries during the period between the legal and political emancipation of the Jews in the 19th century and their persecution in Nazi Germany. It highlights the important role Jewish mathematicians played in all areas of mathematical culture during the Wilhelmine Empire and the Weimar Republic, and recalls their emigration, flight or death after 1933.
The Bialowieza Workshops on Geometric Methods in Physics, which are hosted in the unique setting of the Bialowieza natural forest in Poland, are among the most important meetings in the field. Every year some 80 to 100 participants from both the mathematics and physics world join to discuss new developments and to exchange ideas. The current volume was produced on the occasion of the 32nd meeting in 2013. It is now becoming a tradition that the Workshop is followed by a School on Geometry and Physics, which consists of advanced lectures for graduate students and young researchers. Selected speakers at the 2013 Workshop were asked to contribute to this book, and their work was supplemented by additional review articles. The selection shows that, despite its now long tradition, the workshop remains at the cutting edge of research. The 2013 Workshop also celebrated the 75th birthday of Daniel Sternheimer, and on this occasion the discussion mainly focused on his contributions to mathematical physics such as deformation quantization, Poisson geometry, symplectic geometry and non-commutative differential geometry.
Responding to widespread interest within cultural studies and social inquiry, this book addresses the question 'what is a mathematical concept?' using a variety of vanguard theories in the humanities and posthumanities. Tapping historical, philosophical, sociological and psychological perspectives, each chapter explores the question of how mathematics comes to matter. Of interest to scholars across the usual disciplinary divides, this book tracks mathematics as a cultural activity, drawing connections with empirical practice. Unlike other books in this area, it is highly interdisciplinary, devoted to exploring the ontology of mathematics as it plays out in different contexts. This book will appeal to scholars who are interested in particular mathematical habits - creative diagramming, structural mappings, material agency, interdisciplinary coverings - that shed light on both mathematics and other disciplines. Chapters are also relevant to social sciences and humanities scholars, as each offers philosophical insight into mathematics and how we might live mathematically.
The problem of probability interpretation was long overlooked before exploding in the 20th century, when the frequentist and subjectivist schools formalized two conflicting conceptions of probability. Beyond the radical followers of the two schools, a circle of pluralist thinkers tends to reconcile the opposing concepts. The author uses two theorems in order to prove that the various interpretations of probability do come into opposition and can be used in different contexts. The goal here is to clarify the multi fold nature of probability by means of a purely mathematical approach and to show how philosophical arguments can only serve to deepen actual intellectual contrasts. The book can be considered as one of the most important contributions in the analysis of probability interpretation in the last 10-15 years.
Professor Stephen Lerman has been a leader in the field of mathematics education for thirty years. His work is extensive, making many significant contributions to a number of key areas of research. Stephen retired from South Bank University in 2012, where he had worked for over 20 years, though he continues to work at Loughborough University. In this book several of his long standing colleagues and collaborators reflect on his contribution to mathematics education, and in so doing illustrate how some of Steve's ideas and interventions have resulted in significant shifts in the domain.
This book is a unique collection of challenging geometry problems and detailed solutions that will build students' confidence in mathematics. By proposing several methods to approach each problem and emphasizing geometry's connections with different fields of mathematics, Methods of Solving Complex Geometry Problems serves as a bridge to more advanced problem solving. Written by an accomplished female mathematician who struggled with geometry as a child, it does not intimidate, but instead fosters the reader's ability to solve math problems through the direct application of theorems. Containing over 160 complex problems with hints and detailed solutions, Methods of Solving Complex Geometry Problems can be used as a self-study guide for mathematics competitions and for improving problem-solving skills in courses on plane geometry or the history of mathematics. It contains important and sometimes overlooked topics on triangles, quadrilaterals, and circles such as the Menelaus-Ceva theorem, Simson's line, Heron's formula, and the theorems of the three altitudes and medians. It can also be used by professors as a resource to stimulate the abstract thinking required to transcend the tedious and routine, bringing forth the original thought of which their students are capable. Methods of Solving Complex Geometry Problems will interest high school and college students needing to prepare for exams and competitions, as well as anyone who enjoys an intellectual challenge and has a special love of geometry. It will also appeal to instructors of geometry, history of mathematics, and math education courses.
This book presents the classical theory of curves in the plane and three-dimensional space, and the classical theory of surfaces in three-dimensional space. It pays particular attention to the historical development of the theory and the preliminary approaches that support contemporary geometrical notions. It includes a chapter that lists a very wide scope of plane curves and their properties. The book approaches the threshold of algebraic topology, providing an integrated presentation fully accessible to undergraduate-level students. At the end of the 17th century, Newton and Leibniz developed differential calculus, thus making available the very wide range of differentiable functions, not just those constructed from polynomials. During the 18th century, Euler applied these ideas to establish what is still today the classical theory of most general curves and surfaces, largely used in engineering. Enter this fascinating world through amazing theorems and a wide supply of surprising examples. Reach the doors of algebraic topology by discovering just how an integer (= the Euler-Poincare characteristics) associated with a surface gives you a lot of interesting information on the shape of the surface. And penetrate the intriguing world of Riemannian geometry, the geometry that underlies the theory of relativity. The book is of interest to all those who teach classical differential geometry up to quite an advanced level. The chapter on Riemannian geometry is of great interest to those who have to "intuitively" introduce students to the highly technical nature of this branch of mathematics, in particular when preparing students for courses on relativity.
Goesta Mittag-Leffler (1846-1927) played a significant role as both a scientist and entrepreneur. Regarded as the father of Swedish mathematics, his influence extended far beyond his chosen field because of his extensive network of international contacts in science, business, and the arts. He was instrumental in seeing to it that Marie Curie was awarded the Nobel Prize twice. One of Mittag-Leffler's major accomplishments was the founding of the journal Acta Mathematica , published by Institut Mittag-Leffler and Sweden's Royal Academy of Sciences. Arild Stubhaug's research for this monumental biography relied on a wealth of primary and secondary resources, including more than 30000 letters that are part of the Mittag-Leffler archives. Written in a lucid and compelling manner, the biography contains many hitherto unknown facts about Mittag-Leffler's personal life and professional endeavors. It will be of great interest to both mathematicians and general readers interested in science and culture.
People, problems, and proofs are the lifeblood of theoretical computer science. Behind the computing devices and applications that have transformed our lives are clever algorithms, and for every worthwhile algorithm there is a problem that it solves and a proof that it works. Before this proof there was an open problem: can one create an efficient algorithm to solve the computational problem? And, finally, behind these questions are the people who are excited about these fundamental issues in our computational world. In this book the authors draw on their outstanding research and teaching experience to showcase some key people and ideas in the domain of theoretical computer science, particularly in computational complexity and algorithms, and related mathematical topics. They show evidence of the considerable scholarship that supports this young field, and they balance an impressive breadth of topics with the depth necessary to reveal the power and the relevance of the work described. Beyond this, the authors discuss the sustained effort of their community, revealing much about the culture of their field. A career in theoretical computer science at the top level is a vocation: the work is hard, and in addition to the obvious requirements such as intellect and training, the vignettes in this book demonstrate the importance of human factors such as personality, instinct, creativity, ambition, tenacity, and luck. The authors' style is characterize d by personal observations, enthusiasm, and humor, and this book will be a source of inspiration and guidance for graduate students and researchers engaged with or planning careers in theoretical computer science.
This first complete English language edition of Euclides vindicatus presents a corrected and revised edition of the classical English translation of Saccheri's text by G.B. Halsted. It is complemented with a historical introduction on the geometrical environment of the time and a detailed commentary that helps to understand the aims and subtleties of the work. Euclides vindicatus, written by the Jesuit mathematician Gerolamo Saccheri, was published in Milan in 1733. In it, Saccheri attempted to reform elementary geometry in two important directions: a demonstration of the famous Parallel Postulate and the theory of proportions. Both topics were of pivotal importance in the mathematics of the time. In particular, the Parallel Postulate had escaped demonstration since the first attempts at it in the Classical Age, and several books on the topic were published in the Early Modern Age. At the same time, the theory of proportion was the most important mathematical tool of the Galilean School in its pursuit of the mathematization of nature. Saccheri's attempt to prove the Parallel Postulate is today considered the most important breakthrough in geometry in the 18th century, as he was able to develop for hundreds of pages and dozens of theorems a system in geometry that denied the truth of the postulate (in the attempt to find a contradiction). This can be regarded as the first system of non-Euclidean geometry. Its later developments by Lambert, Bolyai, Lobachevsky and Gauss eventually opened the way to contemporary geometry. Occupying a unique position in the literature of mathematical history, Euclid Vindicated from Every Blemish will be of high interest to historians of mathematics as well as historians of philosophy interested in the development of non-Euclidean geometries.
This book is a collection of essays on the reception of Leibniz's thinking in the sciences and in the philosophy of science in the 19th and 20th centuries. Authors studied include C.F. Gauss, Georg Cantor, Kurd Lasswitz, Bertrand Russell, Ernst Cassirer, Louis Couturat, Hans Reichenbach, Hermann Weyl, Kurt Goedel and Gregory Chaitin. In addition, we consider concepts and problems central to Leibniz's thought and that of the later authors: the continuum, space, identity, number, the infinite and the infinitely small, the projects of a universal language, a calculus of logic, a mathesis universalis etc. The book brings together two fields of research in the history of philosophy and of science (research on Leibniz, and the research concerned with some major developments in the 19th and 20th centuries); it describes how Leibniz's thought appears in the works of these authors, in order to better understand Leibniz's influence on contemporary science and philosophy; but it also assesses that reception critically, confronting it in particular with the current state of Leibniz research and with the various editions of his work.
This book presents diverse topics in mathematical logic such as proof theory, meta-mathematics, and applications of logic to mathematical structures. The collection spans the first 100 years of modern logic and is dedicated to the memory of Irving Anellis, founder of the journal 'Modern Logic', whose academic work was essential in promoting the algebraic tradition of logic, as represented by Charles Sanders Peirce. Anellis's association with the Russian logic community introduced their school of logic to a wider audience in the USA, Canada and Western Europe. In addition, the collection takes a historical perspective on proof theory and the development of logic and mathematics in Eastern Logic, the Soviet Union and Russia. The book will be of interest to historians and philosophers in logic and mathematics, and the more specialized papers will also appeal to mathematicians and logicians.
The commentaries in this volume provide reviews of selected papers from the three-volume Collected Papers of Jack Carl Kiefer. From the Preface of Volume III: "The theory of optimal design of experiments as we know it today is built on a solid foundation developed by Jack Kiefer, who formulated and resolved some of the major problems of data collection via experimentation. A principal ingredient in his formulation was statistical efficiency of a design. Kiefer's theoretical contributions to optimal designs can be broadly classified into several categories: He rigorously defined, developed, and interrelated statistical notions of optimality. He developed powerful tools for verifying and searching for optimal designs; this includes the "averaging technique"... for approximate or exact theory, and "patchwork"... for exact theory... Kiefer and Wolfowitz provided a theorem now known as the Equivalence Theorem. This result has become a classical theorem in the field. One important feature of this theorem is that it provides a measure of how far a given design is from the optimal design. He characterized and constructed families of optimal designs. Some of the celebrated ones are balanced block designs, generalized Youden designs, and weighing designs. He also developed combinatorial structures of these designs."
This book explores some of the major turning points in the history of mathematics, ranging from ancient Greece to the present, demonstrating the drama that has often been a part of its evolution. Studying these breakthroughs, transitions, and revolutions, their stumbling-blocks and their triumphs, can help illuminate the importance of the history of mathematics for its teaching, learning, and appreciation. Some of the turning points considered are the rise of the axiomatic method (most famously in Euclid), and the subsequent major changes in it (for example, by David Hilbert); the "wedding," via analytic geometry, of algebra and geometry; the "taming" of the infinitely small and the infinitely large; the passages from algebra to algebras, from geometry to geometries, and from arithmetic to arithmetics; and the revolutions in the late nineteenth and early twentieth centuries that resulted from Georg Cantor's creation of transfinite set theory. The origin of each turning point is discussed, along with the mathematicians involved and some of the mathematics that resulted. Problems and projects are included in each chapter to extend and increase understanding of the material. Substantial reference lists are also provided. Turning Points in the History of Mathematics will be a valuable resource for teachers of, and students in, courses in mathematics or its history. The book should also be of interest to anyone with a background in mathematics who wishes to learn more about the important moments in its development.
Both classical geometry and modern differential geometry have been active subjects of research throughout the 20th century and lie at the heart of many recent advances in mathematics and physics. The underlying motivating concept for the present book is that it offers readers the elements of a modern geometric culture by means of a whole series of visually appealing unsolved (or recently solved) problems that require the creation of concepts and tools of varying abstraction. Starting with such natural, classical objects as lines, planes, circles, spheres, polygons, polyhedra, curves, surfaces, convex sets, etc., crucial ideas and above all abstract concepts needed for attaining the results are elucidated. These are conceptual notions, each built "above" the preceding and permitting an increase in abstraction, represented metaphorically by Jacob's ladder with its rungs: the 'ladder' in the Old Testament, that angels ascended and descended... In all this, the aim of the book is to demonstrate to readers the unceasingly renewed spirit of geometry and that even so-called "elementary" geometry is very much alive and at the very heart of the work of numerous contemporary mathematicians. It is also shown that there are innumerable paths yet to be explored and concepts to be created. The book is visually rich and inviting, so that readers may open it at random places and find much pleasure throughout according their own intuitions and inclinations. Marcel Berger is t he author of numerous successful books on geometry, this book once again is addressed to all students and teachers of mathematics with an affinity for geometry.
This book collects the papers of the conference held in Berlin, Germany, 27-29 August 2012, on 'Space, Geometry and the Imagination from Antiquity to the Modern Age'. The conference was a joint effort by the Max Planck Institute for the History of Science (Berlin) and the Centro die Ricerca Matematica Ennio De Giorgi (Pisa).
This two volume set presents over 50 of the most groundbreaking contributions of Menahem M Schiffer. All of the reprints of Schiffer's works herein have extensive annotation and invited commentaries, giving new clarity and insight into the impact and legacy of Schiffer's work. A complete bibliography and brief biography make this a rounded and invaluable reference.
This monograph considers several well-known mathematical theorems and asks the question, "Why prove it again?" while examining alternative proofs. It explores the different rationales mathematicians may have for pursuing and presenting new proofs of previously established results, as well as how they judge whether two proofs of a given result are different. While a number of books have examined alternative proofs of individual theorems, this is the first that presents comparative case studies of other methods for a variety of different theorems. The author begins by laying out the criteria for distinguishing among proofs and enumerates reasons why new proofs have, for so long, played a prominent role in mathematical practice. He then outlines various purposes that alternative proofs may serve. Each chapter that follows provides a detailed case study of alternative proofs for particular theorems, including the Pythagorean Theorem, the Fundamental Theorem of Arithmetic, Desargues' Theorem, the Prime Number Theorem, and the proof of the irreducibility of cyclotomic polynomials. Why Prove It Again? will appeal to a broad range of readers, including historians and philosophers of mathematics, students, and practicing mathematicians. Additionally, teachers will find it to be a useful source of alternative methods of presenting material to their students.
Karl Menger, one of the founders of dimension theory, is among the most original mathematicians and thinkers of the twentieth century. He was a member of the Vienna Circle and the founder of its mathematical equivalent, the Viennese Mathematical Colloquium. Both during his early years in Vienna and, after his emigration, in the United States, Karl Menger made significant contributions to a wide variety of mathematical fields, and greatly influenced many of his colleagues. These two volumes contain Menger's major mathematical papers, based on his own selection from his extensive writings. They deal with topics as diverse as topology, geometry, analysis and algebra, and also include material on economics, sociology, logic and philosophy. The Selecta Mathematica is a monument to the diversity and originality of Menger's ideas.
Up to now there have been scarcely any publications on Leibniz dedicated to investigating the interrelations between philosophy and mathematics in his thought. In part this is due to the previously restricted textual basis of editions such as those produced by Gerhardt. Through recent volumes of the scientific letters and mathematical papers series of the Academy Edition scholars have obtained a much richer textual basis on which to conduct their studies - material which allows readers to see interconnections between his philosophical and mathematical ideas which have not previously been manifested. The present book draws extensively from this recently published material. The contributors are among the best in their fields. Their commissioned papers cover thematically salient aspects of the various ways in which philosophy and mathematics informed each other in Leibniz's thought. |
![]() ![]() You may like...
A Modern Guide to Public Policy
Giliberto Capano, Michael Howlett
Hardcover
R3,731
Discovery Miles 37 310
The Politics and Policy of Wellbeing…
Ian Bache, Louise Reardon
Paperback
R1,084
Discovery Miles 10 840
Public Administration & Management in…
Christopher Thornhill, Isioma Ile, …
Paperback
![]() R584 Discovery Miles 5 840
Saving South Africa - Lessons From The…
Chris Pappas, Sandile Mnikathi
Paperback
Advice and Consent - The Politics of…
Lee Epstein, Jeffrey Allan Segal
Hardcover
R2,004
Discovery Miles 20 040
|