![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > History of mathematics
L.E.J. Brouwer (1881-1966) is best known for his revolutionary
ideas on topology and foundations of mathematics (intuitionism).
The present collection contains a mixture of letters; university
and faculty correspondence has been included, some of which shed
light on the student years, and in particular on the exchange of
letters with his PhD adviser, Korteweg.
Missionaries, and in particular the Portuguese Assistancy of the Society of Jesus, played a fundamental role in the dissemination of Western scientific knowledge in East Asia. They also brought to Europe a deeper knowledge of Asian countries. This volume brings together a series of essays analyzing important new data on this significant scientific and cultural exchange, including several in-depth discussions of new sources relevant to Jesuit scientific activities at the Chinese Emperor's Court. It includes major contributions examining various case studies that range from the work of some individual missionaries (Karel Slavicek, Guillaume Bonjour) in Beijing during the reigns of Kangxi and Yongzheng to the cultural exchange between a Korean envoy and the Beijing Jesuits during the early 18th century. Focusing in particular on the relationship between science and the arts, this volume also features articles pertaining to the historical contributions made by Tomas Pereira and Jean-Joseph-Marie Amiot, to the exchange of musical knowledge between China and Europe.
In this unique insight into the history and philosophy of mathematics and science in the mediaeval Arab world, the eminent scholar Roshdi Rashed illuminates the various historical, textual and epistemic threads that underpinned the history of Arabic mathematical and scientific knowledge up to the seventeenth century. The first of five wide-ranging and comprehensive volumes, this book provides a detailed exploration of Arabic mathematics and sciences in the ninth and tenth centuries. Extensive and detailed analyses and annotations support a number of key Arabic texts, which are translated here into English for the first time. In this volume Rashed focuses on the traditions of celebrated polymaths from the ninth and tenth centuries 'School of Baghdad' - such as the Banu Musa, Thabit ibn Qurra, Ibrahim ibn Sinan, Abu Jafar al-Khazin, Abu Sahl Wayjan ibn Rustam al-Quhi - and eleventh-century Andalusian mathematicians like Abu al-Qasim ibn al-Samh, and al-Mu'taman ibn Hud. The Archimedean-Apollonian traditions of these polymaths are thematically explored to illustrate the historical and epistemological development of 'infinitesimal mathematics' as it became more clearly articulated in the eleventh-century influential legacy of al-Hasan ibn al-Haytham ('Alhazen'). Contributing to a more informed and balanced understanding of the internal currents of the history of mathematics and the exact sciences in Islam, and of its adaptive interpretation and assimilation in the European context, this fundamental text will appeal to historians of ideas, epistemologists, mathematicians at the most advanced levels of research.
A lively and engaging look at logic puzzles and their role in mathematics, philosophy, and recreation Logic puzzles were first introduced to the public by Lewis Carroll in the late nineteenth century and have been popular ever since. Games like Sudoku and Mastermind are fun and engrossing recreational activities, but they also share deep foundations in mathematical logic and are worthy of serious intellectual inquiry. Games for Your Mind explores the history and future of logic puzzles while enabling you to test your skill against a variety of puzzles yourself. In this informative and entertaining book, Jason Rosenhouse begins by introducing readers to logic and logic puzzles and goes on to reveal the rich history of these puzzles. He shows how Carroll's puzzles presented Aristotelian logic as a game for children, yet also informed his scholarly work on logic. He reveals how another pioneer of logic puzzles, Raymond Smullyan, drew on classic puzzles about liars and truthtellers to illustrate Kurt Goedel's theorems and illuminate profound questions in mathematical logic. Rosenhouse then presents a new vision for the future of logic puzzles based on nonclassical logic, which is used today in computer science and automated reasoning to manipulate large and sometimes contradictory sets of data. Featuring a wealth of sample puzzles ranging from simple to extremely challenging, this lively and engaging book brings together many of the most ingenious puzzles ever devised, including the "Hardest Logic Puzzle Ever," metapuzzles, paradoxes, and the logic puzzles in detective stories.
This unique volume summarizes with a historical perspective several of the major scientific achievements of Ludwig Faddeev, with a foreword by Nobel Laureate C N Yang. The volume that spans over fifty years of Faddeev's career begins where he started his own scientific research, in the subject of scattering theory and the three-body problem. It then continues to describe Faddeev's contributions to automorphic functions, followed by an extensive account of his many fundamental contributions to quantum field theory including his original article on ghosts with Popov. Faddeev's contributions to soliton theory and integrable models are then described, followed by a survey of his work on quantum groups. The final scientific section is devoted to Faddeev's contemporary research including articles on his long-term interest in constructing knotted solitons and understanding confinement. The volume concludes with his personal view on science and mathematical physics in particular.
This book explores the rich and deep interplay between mathematics and physics one century after David Hilbert's works from 1891 to 1933, published by Springer in six volumes. The most prominent scientists in various domains of these disciplines contribute to this volume providing insight to their works, and analyzing the impact of the breakthrough and the perspectives of their own contributions. The result is a broad journey through the most recent developments in mathematical physics, such as string theory, quantum gravity, noncommutative geometry, twistor theory, Gauge and Quantum fields theories, just to mention a few. The reader, accompanied on this journey by some of the fathers of these theories, explores some far reaching interfaces where mathematics and theoretical physics interact profoundly and gets a broad and deep understanding of subjects which are at the core of recent developments in mathematical physics. The journey is not confined to the present state of the art, but sheds light on future developments of the field, highlighting a list of open problems. Graduate students and researchers working in physics, mathematics and mathematical physics will find this journey extremely fascinating. All those who want to benefit from a comprehensive description of all the latest advances in mathematics and mathematical physics, will find this book very useful too.
This book traces the history of the MIT Department of Mathematics one of the most important mathematics departments in the world through candid, in-depth, lively conversations with a select and diverse group of its senior members. The process reveals much about the motivation, path, and impact of research mathematicians in a society that owes so much to this little understood and often mystifying section of its intellectual fabric. At a time when the mathematical experience touches and attracts more laypeople than ever, such a book contributes to our understanding and entertains through its personal approach.
A History of Mathematics Education during the Twentieth Century describes the history of mathematics education in the United States with conceptual themes concerning philosophy, mathematics content, teacher education, pedagogy, and assessment. Each decade of the twentieth century is analyzed using historical documents, within the context of the aforementioned themes, to create a concise history of mathematical reform as it relates to history within the United States. Finally, conclusions are drawn as to which reform movements are similar and different throughout the century-depicting which aspects of reform can be seen again. Mathematics education tends to swing on a pendulum from "traditional education" including teacher-directed instruction with an emphasis on computation skills to "reform education," including student-directed instruction with an emphasis on problem solving. All decades are analyzed to see where they were on the pendulum and what aspects may have contributed to the current reform movements led by the Standards movement.
Describes the development and the ultimate demise of the practice of mathematics insixteenth century Antwerp. Against the background of the violent history of the Religious Wars the story of the practice of mathematics in Antwerp is told through the lives of two protagonists Michiel Coignet and Peeter Heyns. The book touches on all aspects of practical mathematics from teaching and instrument making to the practice of building fortifications of the practice of navigation. "
In 1644 the Qing dynasty seized power in China. Its Manchu elite were at first seen by most of their subjects as foreigners from beyond the Great Wall, and the consolidation of Qing rule presented significant cultural and political problems, as well as military challenges. It was the Kangxi emperor (r. 1662-1722) who set the dynasty on a firm footing, and one of his main stratagems to achieve this was the appropriation for imperial purposes of the scientific knowledge brought to China by the Jesuit mission (1582-1773). For almost two centuries, the Jesuits put the sciences in the service of evangelization, teaching and practising what came to be known as 'Western learning' among Chinese scholars, many of whom took an active interest in it. After coming to the throne as a teenager, Kangxi began his life-long intervention in mathematical and scientific matters when he forced a return to the use of Western methods in official astronomy. In middle life, he studied astronomy, musical theory and mathematics, with Jesuits as his teachers. In his last years he sponsored a great compilation covering these three disciplines, and set several of his sons to work on this project. All of this activity formed a vital part of his plan to establish Manchu authority over the Chinese. This book explains why Kangxi made the sciences a tool for laying the foundations of empire, and to show how, as part of this process, mathematics was reconstructed as a branch of imperial learning.
Learn about the boy who - could read and add numbers when he was three years old, - thwarted his teacher by finding a quick and easy way to sum the numbers 1-100, - attracted the attention of a Duke with his genius, and became the man who... - predicted the reappearance of a lost planet, - discovered basic properties of magnetic forces, - invented a surveying tool used by professionals until the invention of lasers. Based on extensive research of original and secondary sources, this historical narrative will inspire young readers and even curious adults with its touching story of personal achievement.
Paul Erdos published more papers during his lifetime than any other mathematician, especially in discrete mathematics. He had a nose for beautiful, simply-stated problems with solutions that have far-reaching consequences across mathematics. This captivating book, written for students, provides an easy-to-understand introduction to discrete mathematics by presenting questions that intrigued Erdos, along with his brilliant ways of working toward their answers. It includes young Erdos's proof of Bertrand's postulate, the Erdos-Szekeres Happy End Theorem, De Bruijn-Erdos theorem, Erdos-Rado delta-systems, Erdos-Ko-Rado theorem, Erdos-Stone theorem, the Erdos-Renyi-Sos Friendship Theorem, Erdos-Renyi random graphs, the Chvatal-Erdos theorem on Hamilton cycles, and other results of Erdos, as well as results related to his work, such as Ramsey's theorem or Deza's theorem on weak delta-systems. Its appendix covers topics normally missing from introductory courses. Filled with personal anecdotes about Erdos, this book offers a behind-the-scenes look at interactions with the legendary collaborator.
**The First Ever Maths Book to be a No.1 Bestseller** 'Wonderful ... superb' Daily Mail What makes a bridge wobble when it's not meant to? Billions of dollars mysteriously vanish into thin air? A building rock when its resonant frequency matches a gym class leaping to Snap's 1990 hit I've Got The Power? The answer is maths. Or, to be precise, what happens when maths goes wrong in the real world. As Matt Parker shows us, our modern lives are built on maths: computer programmes, finance, engineering. And most of the time this maths works quietly behind the scenes, until ... it doesn't. Exploring and explaining a litany of glitches, near-misses and mishaps involving the internet, big data, elections, street signs, lotteries, the Roman empire and a hapless Olympic shooting team, Matt Parker shows us the bizarre ways maths trips us up, and what this reveals about its essential place in our world. Mathematics doesn't have good 'people skills', but we would all be better off, he argues, if we saw it as a practical ally. This book shows how, by making maths our friend, we can learn from its pitfalls. It also contains puzzles, challenges, geometric socks, jokes about binary code and three deliberate mistakes. Getting it wrong has never been more fun.
Guicciardini presents a comprehensive survey of both the research and teaching of Newtonian calculus, the calculus of "fluxions," over the period between 1700 and 1810. Although Newton was one of the inventors of calculus, the developments in Britain remained separate from the rest of Europe for over a century. While it is usually maintained that after Newton there was a period of decline in British mathematics, the author's research demonstrates that the methods used by researchers of the period yielded considerable success in laying the foundations and investigating the applications of the calculus. Even when "decline" set in, in mid century, the foundations of the reform were being laid, which were to change the direction and nature of the mathematics community. The book considers the importance of Isaac Newton, Roger Cotes, Brook Taylor, James Stirling, Abraham de Moivre, Colin Maclaurin, Thomas Bayes, John Landen and Edward Waring. This will be a useful book for students and researchers in the history of science, philosophers of science and undergraduates studying the history of mathematics.
This is a collection of surveys on important mathematical ideas, their origin, their evolution and their impact in current research. The authors are mathematicians who are leading experts in their fields. The book is addressed to all mathematicians, from undergraduate students to senior researchers, regardless of the specialty.
This volume introduces the reader to Greek and Roman ways of expressing numbers, weights and measures. These are matters often relegated to footnotes or an appendix. Yet the words, the symbols and the calculations used in the classical world have an interest in themselves and often reveal unexpected facets of the culture that employed them. The subject can be complex but this book seeks to cut it to the essentials and to avoid the aridity of larger, more technical treatments. It offers a fluid and readable text, liberally enhanced with tables and specific examples. Chapters cover the cardinal numbers, other number words, inclusive reckoning, symbols, fractions, simple arithmetic, linear measurements, measuring area and volume, measuring weight, capacity and value; financial matters; sizes of pipes and nozzles; measuring time. It is quite simply an indispensable point of reference for every student of classical culture or of ancient texts.
This helpful volume explains and proves Godel's theorem, which states that arithmetic cannot be reduced to any axiomatic system. Written simply and directly, this book is intended for the student and general reader and presumes no specialized knowledge of mathematics or logic.
A remarkable account of Kurt Goedel, weaving together creative genius, mental illness, political corruption, and idealism in the face of the turmoil of war and upheaval. At age 24, a brilliant Austrian-born mathematician published a mathematical result that shook the world. Nearly a hundred years after Kurt Goedel's famous 1931 paper "On Formally Undecidable Propositions" appeared, his proof that every mathematical system must contain propositions that are true - yet never provable within that system - continues to pose profound questions for mathematics, philosophy, computer science, and artificial intelligence. His close friend Albert Einstein, with whom he would walk home every day from Princeton's famous Institute for Advanced Study, called him "the greatest logician since Aristotle." He was also a man who felt profoundly out of place in his time, rejecting the entire current of 20th century philosophical thought in his belief that mathematical truths existed independent of the human mind, and beset by personal demons of anxiety and paranoid delusions that would ultimately lead to his tragic end from self-starvation. Drawing on previously unpublished letters, diaries, and medical records, Journey to the Edge of Reason offers the most complete portrait yet of the life of one of the 20th century's greatest thinkers. Stephen Budiansky's account brings to life the remarkable world of philosophical and mathematical creativity of pre-war Vienna, and documents how it was barbarically extinguished by the Nazis. He charts Goedel's own hair's-breadth escape from Nazi Germany to the scholarly idyll of Princeton; and the complex, gently humorous, sensitive, and tormented inner life of this iconic but previously enigmatic giant of modern science. Weaving together Goedel's public and private lives, this is a tale of creative genius, mental illness, political corruption, and idealism in the face of the turmoil of war and upheaval.
Eugenics is the branch of biology concerned with the improvement of hereditary qualities in humans. It draws scientists into direct contact with social and political policy makers. Yet, eugenic movements which have been mainly implemented by politicians, often differ significantly from the original aims of the scientists. The four contributors to this volume examine the eugenic movements in Germany, France, Brazil, and the Soviet Union. The scientific components of those programmes are considered alongside the social, religious, and political forces which significantly altered the original scientific goals. The book opens up new and comparative perspectives on the history of eugenics and the social aspects of science in general.
This volume reviews conceptual conflicts at the foundations of physics now and in the past century. The focus is on the conditions and consequences of Einstein's pathbreaking achievements that sealed the decline of the classical notions of space, time, radiation, and matter, and resulted in the theory of relativity. Particular attention is paid to the implications of conceptual conflicts for scientific views of the world at large, thus providing the basis for a comparison of the demise of the mechanical worldview at the turn of the 20th century with the challenges presented by cosmology at the turn of the 21st century. Throughout the work, Einstein's contributions are not seen in isolation but instead set into the wider intellectual context of dealing with the problem of gravitation in the twilight of classical physics; the investigation of the historical development is carried out with a number of epistemological questions in mind, concerning, in particular, the transformation process of knowledge associated with the changing worldviews of physics.
Saunders Mac Lane was an extraordinary mathematician, a dedicated teacher, and a good citizen who cared deeply about the values of science and education. In his autobiography, he gives us a glimpse of his "life and times," mixing the highly personal with professional observations. His recollections bring to life a century of extraordinary accomplishments and tragedies that inspire and educate. Saunders Mac Lane's life covers nearly a century of mathematical developments. During the earlier part of the twentieth century, he participated in the exciting happenings in Goettingen---the Mecca of mathematics. He studied under David Hilbert, Hermann Weyl, and Paul Bernays and witnessed the collapse of a great tradition under the political pressure of a brutal dictatorship. Later, he contributed to the more abstract and general mathematical viewpoints developed in the twentieth century. Perhaps the most outstanding accomplishment during his long and extraordinary career was the development of the concept of categories, together with Samuel Eilenberg, and the creation of a theory that has broad applications in different areas of mathematics, in particular topology and foundations. He was also a keen observer and active participant in the social and political events. As a member and vice president of the National Academy of Science and an advisor to the Administration, he exerted considerable influence on science and education policies in the post-war period. Mac Lane's autobiography takes the reader on a journey through the most important milestones of the mathematical world in the twentieth century.
This book seeks to explore the history of descriptive geometry in relation to its circulation in the 19th century, which had been favoured by the transfers of the model of the Ecole Polytechnique to other countries. The book also covers the diffusion of its teaching from higher instruction to technical and secondary teaching. In relation to that, there is analysis of the role of the institution - similar but definitely not identical in the different countries - in the field under consideration. The book contains chapters focused on different countries, areas, and institutions, written by specialists of the history of the field. Insights on descriptive geometry are provided in the context of the mathematical aspect, the aspect of teaching in particular to non-mathematicians, and the institutions themselves.
This is a unified treatment of the various algebraic approaches to geometric spaces. The study of algebraic curves in the complex projective plane is the natural link between linear geometry at an undergraduate level and algebraic geometry at a graduate level, and it is also an important topic in geometric applications, such as cryptography. 380 years ago, the work of Fermat and Descartes led us to study geometric problems using coordinates and equations. Today, this is the most popular way of handling geometrical problems. Linear algebra provides an efficient tool for studying all the first degree (lines, planes) and second degree (ellipses, hyperboloids) geometric figures, in the affine, the Euclidean, the Hermitian and the projective contexts. But recent applications of mathematics, like cryptography, need these notions not only in real or complex cases, but also in more general settings, like in spaces constructed on finite fields. And of course, why not also turn our attention to geometric figures of higher degrees? Besides all the linear aspects of geometry in their most general setting, this book also describes useful algebraic tools for studying curves of arbitrary degree and investigates results as advanced as the Bezout theorem, the Cramer paradox, topological group of a cubic, rational curves etc. Hence the book is of interest for all those who have to teach or study linear geometry: affine, Euclidean, Hermitian, projective; it is also of great interest to those who do not want to restrict themselves to the undergraduate level of geometric figures of degree one or two.
Dirk van Dalen's biography studies the fascinating life of the famous Dutch mathematician and philosopher Luitzen Egbertus Jan Brouwer. Brouwer belonged to a special class of genius; complex and often controversial and gifted with a deep intuition, he had an unparalleled access to the secrets and intricacies of mathematics. Most mathematicians remember L.E.J. Brouwer from his scientific breakthroughs in the young subject of topology and for the famous Brouwer fixed point theorem. Brouwer's main interest, however, was in the foundation of mathematics which led him to introduce, and then consolidate, constructive methods under the name 'intuitionism'. This made him one of the main protagonists in the 'foundation crisis' of mathematics. As a confirmed internationalist, he also got entangled in the interbellum struggle for the ending of the boycott of German and Austrian scientists. This time during the twentieth century was turbulent; nationalist resentment and friction between formalism and intuitionism led to the Mathematische Annalen conflict ('The war of the frogs and the mice'). It was here that Brouwer played a pivotal role. The present biography is an updated revision of the earlier two volume biography in one single book. It appeals to mathematicians and anybody interested in the history of mathematics in the first half of the twentieth century.
As the famous Pythagorean statement reads, 'Number rules the universe', and its veracity is proven in the many mathematical discoveries that have accelerated the development of science, engineering, and even philosophy. A so called "art of the mind", mathematics has guided and stimulated many aspects of human innovation down through the centuries. In this book, Marcel Danesi presents a historical overview of the ten greatest achievements in mathematics, and dynamically explores their importance and effects on our daily lives. Considered as a chain of events rather than isolated incidents, Danesi takes us from the beginnings of modern day mathematics with Pythagoras, through the concept of zero, right the way up to modern computational algorithms. Loaded with thought-provoking practical exercises and puzzles, Pythagoras' Legacy allows the reader to apply their knowledge and discover the significance of mathematics in their everyday lives. |
![]() ![]() You may like...
Requirements Management - The Interface…
Colin Hood, Simon Wiedemann, …
Hardcover
R1,550
Discovery Miles 15 500
Function/Architecture Optimization and…
Bassam Tabbara, Abdallah Tabbara, …
Hardcover
R3,024
Discovery Miles 30 240
Principles of Verifiable RTL Design - A…
Lionel Bening, Harry D. Foster
Hardcover
R4,528
Discovery Miles 45 280
Management and Applications of Complex…
G. Rzevski, S. Syngellakis
Hardcover
R2,479
Discovery Miles 24 790
Specification and Development of…
Manfred Broy, Ketil Stolen
Hardcover
R1,579
Discovery Miles 15 790
|