![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > History of mathematics
This work counters historiographies that search for the origins of modern science within the experimental practices of Europe 's first scientific institutions, such as the Cimento. It proposes that we should look beyond the experimental rhetoric found in published works, to find that the Cimento academicians were participants in a culture of natural philosophical theorising that existed throughout Europe.
This clearly written and enlightening textbook provides a concise, introductory guide to the key mathematical concepts and techniques used by computer scientists. Topics and features: ideal for self-study, offering many pedagogical features such as chapter-opening key topics, chapter introductions and summaries, review questions, and a glossary; places our current state of knowledge within the context of the contributions made by early civilizations, such as the ancient Babylonians, Egyptians and Greeks; examines the building blocks of mathematics, including sets, relations and functions; presents an introduction to logic, formal methods and software engineering; explains the fundamentals of number theory, and its application in cryptography; describes the basics of coding theory, language theory, and graph theory; discusses the concept of computability and decideability; includes concise coverage of calculus, probability and statistics, matrices, complex numbers and quaternions.
Diese Arbeit enthiilt zwei grof3ere Fallstudien zur Beziehung zwischen theo- retischer Mathematik und Anwendungen im 19. Jahrhundert. Sie ist das Ergebnis eines mathematikhistorischen Forschungsprojekts am Mathemati- schen Fachbereich der Universitiit-Gesamthochschule Wuppertal und wurde dort als Habilitationsschrift vorgelegt. Ohne das wohlwollende Interesse von Herrn H. Scheid und den Kollegen der Abteilung fUr Didaktik der Mathema- tik ware das nicht moglich gewesen: Inhaltlich verdankt sie - direkt oder indirekt - vielen Beteiligten et- was. So wurde mein Interesse an den kristallographischen Symmetriekon- zepten, dem Thema der ersten Fallstudie, durch Anregungen und Hinweise von Herrn E. Brieskorn geweckt. Sowohl von seiner Seite als auch von Herrn J. J. Burckhardt stammen uberdies viele wert volle Hinweise zum Manuskript von Kapitel I. Herrn C. J. Scriba mochte ich fur seine die gesamte Arbeit betreffenden priizisen Anmerkungen danken und Herrn W. Borho ebenso fUr seine ubergreifenden Kommentare und Vorschlage. Beziiglich der in Kapitel II behandelten projektiven Methoden in der Baustatik des 19. Jahrhunderts gilt mein besonderer Dank den Herren K. -E. Kurrer und T. Hiinseroth fUr ihre zum Teil sehr detaillierten Anmerkungen aus dem Blickwinkel der Geschichte der Bauwissenschaften. Schliefilich geht mein Dank an alle nicht namentlich Erwiihnten, die in Gesprachen, technisch oder auch anderweitig zur Fertig- stellung dieser Arbeit beigetragen haben. Fur die vorliegende Publikation habe ich einen Anhang mit einer Skizze von in unserem Zusammenhang besonders wichtig erscheinenden Aspekten der Theorie der kristallographischen Raumgruppen hinzugefUgt. Ich hoffe, daB er zum Verstiindnis des mathematischen Hintergrunds der historischen Arbeiten des ersten Kapitels beitragt.
Viewed as a flashpoint of the Scientific Revolution, early modern astronomy witnessed a virtual explosion of ideas about the nature and structure of the world. This study explores these theories in a variety of intellectual settings, challenging our view of modern science as a straightforward successor to Aristotelian natural philosophy. It shows how astronomers dealt with celestial novelties by deploying old ideas in new ways and identifying more subtle notions of cosmic rationality. Beginning with the celestial spheres of Peurbach and ending with the evolutionary implications of the new star Mira Ceti, it surveys a pivotal phase in our understanding of the universe as a place of constant change that confirmed deeper patterns of cosmic order and stability.
This book deals with Newton's understanding of the original divine design hidden in the mathematical laws of nature and delivered to humanity by messengers, such as Noah, Moses and Christ. It is written to an audience of laymen and professionals alike. It is the first scholarly work to point out that for Newton the three laws of motion the Principia and the two central Biblical Commandments (worshipping and loving God alone and loving thy neighbour) touch upon the practical applications of God's original design. The book interprets Newton's mathematical method of fluxions (the calculus) as a divine method through which human beings can purify and guard themselves against material bondage (idolatry), whilst becoming more in tune with the simplicity of the spiritual commandments of the true ancient religion. A comparison with Leibniz's calculus and theological beliefs is given in order to emphasize the uniqueness of Newton's science and spirituality.
An understanding of developments in Arabic mathematics between the IXth and XVth century is vital to a full appreciation of the history of classical mathematics. This book draws together more than ten studies to highlight one of the major developments in Arabic mathematical thinking, provoked by the double fecondation between arithmetic and the algebra of al-Khwarizmi, which led to the foundation of diverse chapters of mathematics: polynomial algebra, combinatorial analysis, algebraic geometry, algebraic theory of numbers, diophantine analysis and numerical calculus. Thanks to epistemological analysis, and the discovery of hitherto unknown material, the author has brought these chapters into the light, proposes another periodization for classical mathematics, and questions current ideology in writing its history. Since the publication of the French version of these studies and of this book, its main results have been admitted by historians of Arabic mathematics, and integrated into their recent publications. This book is already a vital reference for anyone seeking to understand history of Arabic mathematics, and its contribution to Latin as well as to later mathematics. The English translation will be of particular value to historians and philosophers of mathematics and of science.
Intellectual History and the Identity of John Dee In April 1995, at Birkbeck College, University of London, an interdisciplinary colloquium was held so that scholars from diverse fields and areas of expertise could 1 exchange views on the life and work of John Dee. Working in a variety of fields - intellectual history, history of navigation, history of medicine, history of science, history of mathematics, bibliography and manuscript studies - we had all been drawn to Dee by particular aspects of his work, and participating in the colloquium was to c- front other narratives about Dee's career: an experience which was both bewildering and instructive. Perhaps more than any other intellectual figure of the English Renaissance Dee has been fragmented and dispersed across numerous disciplines, and the various attempts to re-integrate his multiplied image by reference to a particular world-view or philosophical outlook have failed to bring him into focus. This volume records the diversity of scholarly approaches to John Dee which have emerged since the synthetic accounts of I. R. F. Calder, Frances Yates and Peter French. If these approaches have not succeeded in resolving the problematic multiplicity of Dee's activities, they will at least deepen our understanding of specific and local areas of his intellectual life, and render them more historiographically legible.
In this volume specialists in mathematics, physics, and linguistics present the first comprehensive analysis of the ideas and influence of Hermann G. Grassmann (1809-1877), the remarkable universalist whose work recast the foundations of these disciplines and shaped the course of their modern development.
This volume presents a selection of 434 letters from and to the Dutch physicist and Nobel Prize winner Hendrik Antoon Lorentz (1853-1928), covering the period from 1883 until a few months before his death in February 1928. The sheer size of the available correspondence (approximately 6000 letters from and to Lorentz) preclude a full publication. The letters included in this volume have been selected according to various criteria, the most important of which is scientific importance. A second criterion has been the availability of letters both from and to Lorentz, so that the reader can follow the exchange between Lorentz and his correspondent. Within such correspondences a few unimportant items, dealing with routine administrative or organizational matters, have been omitted. An exception to the scientific criterion is the exchange of letters between Lorentz and Albert Einstein, Max Planck, Woldemar Voigt, and Wilhelm Wien during World War I: these letters have been included because they shed important light on the disruption of the scientific relations during the war and on the political views of these correspondents as well as of Lorentz. similar reasons the letters exchanged with Einstein and Planck on post-war political issues have been included. Biographical sketch Hendrik Antoon Lorentz was born on July 18, 1853 in the Dutch town of Arnhem. He was the son of a relatively well-to-do owner of a nursery.
This book, in three parts, describes three phases in the development of the modern theory and calculation of the Moon's motion. Part I explains the crisis in lunar theory in the 1870s that led G.W. Hill to lay a new foundation for an analytic solution, a preliminary orbit he called the "variational curve." Part II is devoted to E.W. Brown's completion of the new theory as a series of successive perturbations of Hill's variational curve. Part III describes the revolutionary developments in time-measurement and the determination of Earth-Moon and Earth-planet distances that led to the replacement of the Hill Brown theory in 1984.
The theories of V. V. Wagner (1908-1981) on abstractions of systems of binary relations are presented here within their historical and mathematical contexts. This book contains the first translation from Russian into English of a selection of Wagner's papers, the ideas of which are connected to present-day mathematical research. Along with a translation of Wagner's main work in this area, his 1953 paper 'Theory of generalised heaps and generalised groups,' the book also includes translations of three short precursor articles that provide additional context for his major work. Researchers and students interested in both algebra (in particular, heaps, semiheaps, generalised heaps, semigroups, and groups) and differential geometry will benefit from the techniques offered by these translations, owing to the natural connections between generalised heaps and generalised groups, and the role played by these concepts in differential geometry. This book gives examples from present-day mathematics where ideas related to Wagner's have found fruitful applications.
This contributed volume investigates the active role of the different contexts of mathematics teaching on the evolution of the practices of mathematical concepts, with particular focus on their foundations. The book aims to deconstruct the strong and generally wide-held conviction that research in mathematics constitutes the only driving force for any progress in the development of mathematics as a field. In compelling and convincing contrast, these chapters aim to show the productive function of teaching, showcasing investigations from countries and regions throughout various eras, from Old Babylonia through the 20th Century. In so doing, they provide a critical reflection on the foundations of mathematics, as well as instigate new research questions, and explore the interfaces between teaching and research.
Covering both the history of mathematics and of philosophy, Descartes's Mathematical Thought reconstructs the intellectual career of Descartes most comprehensively and originally in a global perspective including the history of early modern China and Japan. Especially, it shows what the concept of "mathesis universalis" meant before and during the period of Descartes and how it influenced the young Descartes. In fact, it was the most fundamental mathematical discipline during the seventeenth century, and for Descartes a key notion which may have led to his novel mathematics of algebraic analysis.
This work offers a re-edition of twelve mathematical tablets from the site of Tell Harmal, in the borders of present-day Baghdad. In ancient times, Tell Harmal was Saduppum, a city representative of the region of the Diyala river and of the kingdom of Esnunna, to which it belonged for a time. These twelve tablets were originally published in separate articles in the beginning of the 1950s and mostly contain solved problem texts. Some of the problems deal with abstract matters such as triangles and rectangles with no reference to daily life, while others are stated in explicitly empirical contexts, such as the transportation of a load of bricks, the size of a vessel, the number of men needed to build a wall and the acquisition of oil and lard. This new edition of the texts is the first to group them, and takes into account all the recent developments of the research in the history of Mesopotamian mathematics. Its introductory chapters are directed to readers interested in an overview of the mathematical contents of these tablets and the language issues involved in their interpretation, while a chapter of synthesis discusses the ways history of mathematics has typically dealt with the mathematical evidence and inquires how and to what degree mathematical tablets can be made part of a picture of the larger social context. Furthermore, the volume contributes to a geography of the Old Babylonian mathematical practices, by evidencing that scribes at Saduppum made use of cultural material that was locally available. The edited texts are accompanied by translations, philological, and mathematical commentaries.
The Theory of the Top was originally presented by Felix Klein as an 1895 lecture at Goettingen University that was broadened in scope and clarified as a result of collaboration with Arnold Sommerfeld. The Theory of the Top: Volume IV. Technical Applications of the Theory of the Top is the fourth and final installment in a series of self-contained English translations that provide insights into kinetic theory and kinematics.
Euler was not only by far the most productive mathematician in the history of mankind, but also one of the greatest scholars of all time. He attained, like only a few scholars, a degree of popularity and fame which may well be compared with that of Galilei, Newton, or Einstein. Moreover he was a cosmopolitan in the truest sense of the word; he lived during his first twenty years in Basel, was active altogether for more than thirty years in Petersburg and for a quarter of a century in Berlin. Leonhard Euler's unusually rich life and broadly diversified activity in the immediate vicinity of important personalities which have made history, may well justify an exposition. This book is based in part on unpublished sources and comes right out of the current research on Euler. It is entirely free of formulae as it has been written for a broad audience with interests in the history of culture and science.
The present book is a translation into English of Elernenta CU'f'Varurn Linearurn-Liber Prirnus, written in Latin, by the Dutch statesman and mathematician Jan de Witt (1625-1672). Together with its sequel, Ele- rnenta CU'f'Varurn Linearurn-Liber Secundus, it constitutes the first text- book on Analytic Geometry, based on the ideas of Descartes, as laid down in his Geornetrie of 1637. The first edition of de Witt's work appeared in 1659 and this translation is its first translation into English. For more details the reader is referred to the Introduction. Apart from this translation and this introduction, the present work con- tains an extensive summary, annotations to the translation, and two ap- pendices on the role of the conics in Greek mathematics. The translation has been made from the second edition, printed by the Blaeu Company in Amsterdam in 1684. In 1997 the translator published a translation into Dutch of the same work, likewise supplied with an introduction, a summary, notes, and two appendices. This edition appeared as a publication of the Stichting Mathe- matisch Centrum Amsterdam. The present translation, however, is a direct translation of the Latin text. The rest of this work is an English version of the introduction, the summary, the notes, and the appendices, based on the Dutch original.
This engaging text describes the development of singular perturbations, including its history, accumulating literature, and its current status. While the approach of the text is sophisticated, the literature is accessible to a broad audience. A particularly valuable bonus are the historical remarks. These remarks are found throughout the manuscript. They demonstrate the growth of mathematical thinking on this topic by engineers and mathematicians. The book focuses on detailing how the various methods are to be applied. These are illustrated by a number and variety of examples. Readers are expected to have a working knowledge of elementary ordinary differential equations, including some familiarity with power series techniques, and of some advanced calculus. Dr. O'Malley has written a number of books on singular perturbations. This book has developed from many of his works in the field of perturbation theory.
This book celebrates the 50th anniversary of the Institute of Mathematics, Statistics and Scientific Computing (IMECC) of the University of Campinas, Brazil, by offering reviews of selected research developed at one of the most prestigious mathematics institutes in Latin America. Written by senior professors at the IMECC, it covers topics in pure and applied mathematics and statistics ranging from differential geometry, dynamical systems, Lie groups, and partial differential equations to computational optimization, mathematical physics, stochastic process, time series, and more. A report on the challenges and opportunities of research in applied mathematics - a highly active field of research in the country - and highlights of the Institute since its foundation in 1968 completes this historical volume, which is unveiled in the same year that the International Mathematical Union (IMU) names Brazil as a member of the Group V of countries with the most relevant contributions in mathematics.
The Legacy of Freudenthal pays homage to Freudenthal and his work on mathematics, its history and education. Almost all authors were his scholars or co-workers. They testify to what they learned from him. Freudenthal himself contributes posthumously. His didactical phenomenology of the concept of force is both provocative and revealing in its originality, compared with what is usually found in physics instruction. Freudenthal is portrayed as a universal human being by Josette Adda. He made considerable contributions to mathematics itself, e.g. on homotopy theory and Lie groups in geometry. The exposition of Freudenthal's mathematical life and work is on Van Est's account. Henk Bos discusses his historical work. The essay review of the 8th edition of Hilbert's Grundlagen der Geometrie serves as a vehicle of thought. The main part of the book, however, concerns Freudenthal's work on mathematics education. Christine Keitel reviews his final book Revisiting Mathematics Education (1991). Fred Goffree describes Freudenthal's Working on Mathematics Education' both from an historical as well as a theoretical perspective. Adrian Treffers analyses Freudenthal's influence on the development of realistic mathematics education at primary level in the Netherlands, especially his influence on the Wiskobas-project of the former IOWO. Freudenthal once predicted the disappearance of mathematics as an individual subject in education sometime around the year 2000, because it would by then have merged with integrated thematic contexts. Jan de Lange anticipates this future development and shows that Freudenthal's prediction will not come true after all. Reflective interludes unveil how he might haveinfluenced those developments. Freudenthal contributed a wealth of ideas and conceptual tools to the development of mathematics education -- on contexts, didactical phenomenology, guided reinvention, mathematisation, the constitution of mental objects, the development of reflective thinking, levels in learning processes, the development of a mathematical attitude and so on -- but he did not design very much concrete material. Leen Streefland deals with the question of design from a theoretical point of view, while applying Freudenthal's ideas on changing perspective and shifting. For teachers, researchers, mathematics educators, mathematicians, educationalists, psychologists and policy makers.
Sofia Kovalevskaya was a brilliant and determined young Russian woman of the 19th century who wanted to become a mathematician and who succeeded, in often difficult circumstances, in becoming arguably the first woman to have a professional university career in the way we understand it today. This memoir, written by a mathematician who specialises in symplectic geometry and integrable systems, is a personal exploration of the life, the writings and the mathematical achievements of a remarkable woman. It emphasises the originality of Kovalevskaya's work and assesses her legacy and reputation as a mathematician and scientist. Her ideas are explained in a way that is accessible to a general audience, with diagrams, marginal notes and commentary to help explain the mathematical concepts and provide context. This fascinating book, which also examines Kovalevskaya's love of literature, will be of interest to historians looking for a treatment of the mathematics, and those doing feminist or gender studies.
Pierri clearly links modern psychoanalytic practice with Freud's interests in the occult using primary sources, some of which have never before been published in English. Assesses the origins of key psychoanalytic ideas.
The Theory of the Top was originally presented by Felix Klein as an 1895 lecture at Gottingen University that was broadened in scope and clarified as a result of collaboration with Arnold Sommerfeld. The Theory of the Top: Volume III. Perturbations: Astronomical and Geophysical Applications is the third installment in a series of four self-contained English translations that provide insights into kinetic theory and kinematics."
The editors of the present series had originally intended to publish an integrated work on the history of mathematics in the nineteenth century, passing systemati cally from one discipline to another in some natural order. Circumstances beyond their control, mainly difficulties in choosing authors, led to the abandonment of this plan by the time the second volume appeared. Instead of a unified mono graph we now present to the reader a series of books intended to encompass all the mathematics of the nineteenth century, but not in the order of the accepted classification of the component disciplines. In contrast to the first two books of The Mathematics of the Nineteenth Century, which were divided into chapters, this third volume consists of four parts, more in keeping with the nature of the publication. 1 We recall that the first book contained essays on the history of mathemati 2 cal logic, algebra, number theory, and probability, while the second covered the history of geometry and analytic function theory. In the present third volume the reader will find: 1. An essay on the development of Chebyshev's theory of approximation of functions, later called "constructive function theory" by S. N. Bernshtein. This highly original essay is due to the late N. I. Akhiezer (1901-1980), the author of fundamental discoveries in this area. Akhiezer's text will no doubt attract attention not only from historians of mathematics, but also from many specialists in constructive function theory." |
![]() ![]() You may like...
The Secret Lives of Numbers - A Global…
Kate Kitagawa, Timothy Revell
Paperback
Elementary Trigonometry; Solutions of…
H. S. (Henry Sinclair) 1848-1934 Hall, S. R. (Samuel Ratcliffe) Knight
Hardcover
R971
Discovery Miles 9 710
Emilie Du Chatelet - Rewriting…
Judith P Zinsser, Julie Candler Hayes
Paperback
R3,017
Discovery Miles 30 170
|