![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > History of mathematics
An understanding of developments in Arabic mathematics between the IXth and XVth century is vital to a full appreciation of the history of classical mathematics. This book draws together more than ten studies to highlight one of the major developments in Arabic mathematical thinking, provoked by the double fecondation between arithmetic and the algebra of al-Khwarizmi, which led to the foundation of diverse chapters of mathematics: polynomial algebra, combinatorial analysis, algebraic geometry, algebraic theory of numbers, diophantine analysis and numerical calculus. Thanks to epistemological analysis, and the discovery of hitherto unknown material, the author has brought these chapters into the light, proposes another periodization for classical mathematics, and questions current ideology in writing its history. Since the publication of the French version of these studies and of this book, its main results have been admitted by historians of Arabic mathematics, and integrated into their recent publications. This book is already a vital reference for anyone seeking to understand history of Arabic mathematics, and its contribution to Latin as well as to later mathematics. The English translation will be of particular value to historians and philosophers of mathematics and of science.
Intellectual History and the Identity of John Dee In April 1995, at Birkbeck College, University of London, an interdisciplinary colloquium was held so that scholars from diverse fields and areas of expertise could 1 exchange views on the life and work of John Dee. Working in a variety of fields - intellectual history, history of navigation, history of medicine, history of science, history of mathematics, bibliography and manuscript studies - we had all been drawn to Dee by particular aspects of his work, and participating in the colloquium was to c- front other narratives about Dee's career: an experience which was both bewildering and instructive. Perhaps more than any other intellectual figure of the English Renaissance Dee has been fragmented and dispersed across numerous disciplines, and the various attempts to re-integrate his multiplied image by reference to a particular world-view or philosophical outlook have failed to bring him into focus. This volume records the diversity of scholarly approaches to John Dee which have emerged since the synthetic accounts of I. R. F. Calder, Frances Yates and Peter French. If these approaches have not succeeded in resolving the problematic multiplicity of Dee's activities, they will at least deepen our understanding of specific and local areas of his intellectual life, and render them more historiographically legible.
In this volume specialists in mathematics, physics, and linguistics present the first comprehensive analysis of the ideas and influence of Hermann G. Grassmann (1809-1877), the remarkable universalist whose work recast the foundations of these disciplines and shaped the course of their modern development.
The theories of V. V. Wagner (1908-1981) on abstractions of systems of binary relations are presented here within their historical and mathematical contexts. This book contains the first translation from Russian into English of a selection of Wagner's papers, the ideas of which are connected to present-day mathematical research. Along with a translation of Wagner's main work in this area, his 1953 paper 'Theory of generalised heaps and generalised groups,' the book also includes translations of three short precursor articles that provide additional context for his major work. Researchers and students interested in both algebra (in particular, heaps, semiheaps, generalised heaps, semigroups, and groups) and differential geometry will benefit from the techniques offered by these translations, owing to the natural connections between generalised heaps and generalised groups, and the role played by these concepts in differential geometry. This book gives examples from present-day mathematics where ideas related to Wagner's have found fruitful applications.
This volume presents a selection of 434 letters from and to the Dutch physicist and Nobel Prize winner Hendrik Antoon Lorentz (1853-1928), covering the period from 1883 until a few months before his death in February 1928. The sheer size of the available correspondence (approximately 6000 letters from and to Lorentz) preclude a full publication. The letters included in this volume have been selected according to various criteria, the most important of which is scientific importance. A second criterion has been the availability of letters both from and to Lorentz, so that the reader can follow the exchange between Lorentz and his correspondent. Within such correspondences a few unimportant items, dealing with routine administrative or organizational matters, have been omitted. An exception to the scientific criterion is the exchange of letters between Lorentz and Albert Einstein, Max Planck, Woldemar Voigt, and Wilhelm Wien during World War I: these letters have been included because they shed important light on the disruption of the scientific relations during the war and on the political views of these correspondents as well as of Lorentz. similar reasons the letters exchanged with Einstein and Planck on post-war political issues have been included. Biographical sketch Hendrik Antoon Lorentz was born on July 18, 1853 in the Dutch town of Arnhem. He was the son of a relatively well-to-do owner of a nursery.
This contributed volume investigates the active role of the different contexts of mathematics teaching on the evolution of the practices of mathematical concepts, with particular focus on their foundations. The book aims to deconstruct the strong and generally wide-held conviction that research in mathematics constitutes the only driving force for any progress in the development of mathematics as a field. In compelling and convincing contrast, these chapters aim to show the productive function of teaching, showcasing investigations from countries and regions throughout various eras, from Old Babylonia through the 20th Century. In so doing, they provide a critical reflection on the foundations of mathematics, as well as instigate new research questions, and explore the interfaces between teaching and research.
This book, in three parts, describes three phases in the development of the modern theory and calculation of the Moon's motion. Part I explains the crisis in lunar theory in the 1870s that led G.W. Hill to lay a new foundation for an analytic solution, a preliminary orbit he called the "variational curve." Part II is devoted to E.W. Brown's completion of the new theory as a series of successive perturbations of Hill's variational curve. Part III describes the revolutionary developments in time-measurement and the determination of Earth-Moon and Earth-planet distances that led to the replacement of the Hill Brown theory in 1984.
This work offers a re-edition of twelve mathematical tablets from the site of Tell Harmal, in the borders of present-day Baghdad. In ancient times, Tell Harmal was Saduppum, a city representative of the region of the Diyala river and of the kingdom of Esnunna, to which it belonged for a time. These twelve tablets were originally published in separate articles in the beginning of the 1950s and mostly contain solved problem texts. Some of the problems deal with abstract matters such as triangles and rectangles with no reference to daily life, while others are stated in explicitly empirical contexts, such as the transportation of a load of bricks, the size of a vessel, the number of men needed to build a wall and the acquisition of oil and lard. This new edition of the texts is the first to group them, and takes into account all the recent developments of the research in the history of Mesopotamian mathematics. Its introductory chapters are directed to readers interested in an overview of the mathematical contents of these tablets and the language issues involved in their interpretation, while a chapter of synthesis discusses the ways history of mathematics has typically dealt with the mathematical evidence and inquires how and to what degree mathematical tablets can be made part of a picture of the larger social context. Furthermore, the volume contributes to a geography of the Old Babylonian mathematical practices, by evidencing that scribes at Saduppum made use of cultural material that was locally available. The edited texts are accompanied by translations, philological, and mathematical commentaries.
Covering both the history of mathematics and of philosophy, Descartes's Mathematical Thought reconstructs the intellectual career of Descartes most comprehensively and originally in a global perspective including the history of early modern China and Japan. Especially, it shows what the concept of "mathesis universalis" meant before and during the period of Descartes and how it influenced the young Descartes. In fact, it was the most fundamental mathematical discipline during the seventeenth century, and for Descartes a key notion which may have led to his novel mathematics of algebraic analysis.
The Theory of the Top was originally presented by Felix Klein as an 1895 lecture at Goettingen University that was broadened in scope and clarified as a result of collaboration with Arnold Sommerfeld. The Theory of the Top: Volume IV. Technical Applications of the Theory of the Top is the fourth and final installment in a series of self-contained English translations that provide insights into kinetic theory and kinematics.
Euler was not only by far the most productive mathematician in the history of mankind, but also one of the greatest scholars of all time. He attained, like only a few scholars, a degree of popularity and fame which may well be compared with that of Galilei, Newton, or Einstein. Moreover he was a cosmopolitan in the truest sense of the word; he lived during his first twenty years in Basel, was active altogether for more than thirty years in Petersburg and for a quarter of a century in Berlin. Leonhard Euler's unusually rich life and broadly diversified activity in the immediate vicinity of important personalities which have made history, may well justify an exposition. This book is based in part on unpublished sources and comes right out of the current research on Euler. It is entirely free of formulae as it has been written for a broad audience with interests in the history of culture and science.
The present book is a translation into English of Elernenta CU'f'Varurn Linearurn-Liber Prirnus, written in Latin, by the Dutch statesman and mathematician Jan de Witt (1625-1672). Together with its sequel, Ele- rnenta CU'f'Varurn Linearurn-Liber Secundus, it constitutes the first text- book on Analytic Geometry, based on the ideas of Descartes, as laid down in his Geornetrie of 1637. The first edition of de Witt's work appeared in 1659 and this translation is its first translation into English. For more details the reader is referred to the Introduction. Apart from this translation and this introduction, the present work con- tains an extensive summary, annotations to the translation, and two ap- pendices on the role of the conics in Greek mathematics. The translation has been made from the second edition, printed by the Blaeu Company in Amsterdam in 1684. In 1997 the translator published a translation into Dutch of the same work, likewise supplied with an introduction, a summary, notes, and two appendices. This edition appeared as a publication of the Stichting Mathe- matisch Centrum Amsterdam. The present translation, however, is a direct translation of the Latin text. The rest of this work is an English version of the introduction, the summary, the notes, and the appendices, based on the Dutch original.
Pierri clearly links modern psychoanalytic practice with Freud's interests in the occult using primary sources, some of which have never before been published in English. Assesses the origins of key psychoanalytic ideas.
This engaging text describes the development of singular perturbations, including its history, accumulating literature, and its current status. While the approach of the text is sophisticated, the literature is accessible to a broad audience. A particularly valuable bonus are the historical remarks. These remarks are found throughout the manuscript. They demonstrate the growth of mathematical thinking on this topic by engineers and mathematicians. The book focuses on detailing how the various methods are to be applied. These are illustrated by a number and variety of examples. Readers are expected to have a working knowledge of elementary ordinary differential equations, including some familiarity with power series techniques, and of some advanced calculus. Dr. O'Malley has written a number of books on singular perturbations. This book has developed from many of his works in the field of perturbation theory.
This book celebrates the 50th anniversary of the Institute of Mathematics, Statistics and Scientific Computing (IMECC) of the University of Campinas, Brazil, by offering reviews of selected research developed at one of the most prestigious mathematics institutes in Latin America. Written by senior professors at the IMECC, it covers topics in pure and applied mathematics and statistics ranging from differential geometry, dynamical systems, Lie groups, and partial differential equations to computational optimization, mathematical physics, stochastic process, time series, and more. A report on the challenges and opportunities of research in applied mathematics - a highly active field of research in the country - and highlights of the Institute since its foundation in 1968 completes this historical volume, which is unveiled in the same year that the International Mathematical Union (IMU) names Brazil as a member of the Group V of countries with the most relevant contributions in mathematics.
**The First Ever Maths Book to be a No.1 Bestseller** 'Wonderful ... superb' Daily Mail What makes a bridge wobble when it's not meant to? Billions of dollars mysteriously vanish into thin air? A building rock when its resonant frequency matches a gym class leaping to Snap's 1990 hit I've Got The Power? The answer is maths. Or, to be precise, what happens when maths goes wrong in the real world. As Matt Parker shows us, our modern lives are built on maths: computer programmes, finance, engineering. And most of the time this maths works quietly behind the scenes, until ... it doesn't. Exploring and explaining a litany of glitches, near-misses and mishaps involving the internet, big data, elections, street signs, lotteries, the Roman empire and a hapless Olympic shooting team, Matt Parker shows us the bizarre ways maths trips us up, and what this reveals about its essential place in our world. Mathematics doesn't have good 'people skills', but we would all be better off, he argues, if we saw it as a practical ally. This book shows how, by making maths our friend, we can learn from its pitfalls. It also contains puzzles, challenges, geometric socks, jokes about binary code and three deliberate mistakes. Getting it wrong has never been more fun.
The Legacy of Freudenthal pays homage to Freudenthal and his work on mathematics, its history and education. Almost all authors were his scholars or co-workers. They testify to what they learned from him. Freudenthal himself contributes posthumously. His didactical phenomenology of the concept of force is both provocative and revealing in its originality, compared with what is usually found in physics instruction. Freudenthal is portrayed as a universal human being by Josette Adda. He made considerable contributions to mathematics itself, e.g. on homotopy theory and Lie groups in geometry. The exposition of Freudenthal's mathematical life and work is on Van Est's account. Henk Bos discusses his historical work. The essay review of the 8th edition of Hilbert's Grundlagen der Geometrie serves as a vehicle of thought. The main part of the book, however, concerns Freudenthal's work on mathematics education. Christine Keitel reviews his final book Revisiting Mathematics Education (1991). Fred Goffree describes Freudenthal's Working on Mathematics Education' both from an historical as well as a theoretical perspective. Adrian Treffers analyses Freudenthal's influence on the development of realistic mathematics education at primary level in the Netherlands, especially his influence on the Wiskobas-project of the former IOWO. Freudenthal once predicted the disappearance of mathematics as an individual subject in education sometime around the year 2000, because it would by then have merged with integrated thematic contexts. Jan de Lange anticipates this future development and shows that Freudenthal's prediction will not come true after all. Reflective interludes unveil how he might haveinfluenced those developments. Freudenthal contributed a wealth of ideas and conceptual tools to the development of mathematics education -- on contexts, didactical phenomenology, guided reinvention, mathematisation, the constitution of mental objects, the development of reflective thinking, levels in learning processes, the development of a mathematical attitude and so on -- but he did not design very much concrete material. Leen Streefland deals with the question of design from a theoretical point of view, while applying Freudenthal's ideas on changing perspective and shifting. For teachers, researchers, mathematics educators, mathematicians, educationalists, psychologists and policy makers.
The paperback of the critically-acclaimed popular science book by a writer who is fast becoming a celebrity mathematician. Prime numbers are the very atoms of arithmetic. They also embody one of the most tantalising enigmas in the pursuit of human knowledge. How can one predict when the next prime number will occur? Is there a formula which could generate primes? These apparently simple questions have confounded mathematicians ever since the Ancient Greeks. In 1859, the brilliant German mathematician Bernard Riemann put forward an idea which finally seemed to reveal a magical harmony at work in the numerical landscape. The promise that these eternal, unchanging numbers would finally reveal their secret thrilled mathematicians around the world. Yet Riemann, a hypochondriac and a troubled perfectionist, never publicly provided a proof for his hypothesis and his housekeeper burnt all his personal papers on his death. Whoever cracks Riemann's hypothesis will go down in history, for it has implications far beyond mathematics. In business, it is the lynchpin for security and e-commerce. In science, it has critical ramifications in Quantum Mechanics, Chaos Theory, and the future of comput
Sofia Kovalevskaya was a brilliant and determined young Russian woman of the 19th century who wanted to become a mathematician and who succeeded, in often difficult circumstances, in becoming arguably the first woman to have a professional university career in the way we understand it today. This memoir, written by a mathematician who specialises in symplectic geometry and integrable systems, is a personal exploration of the life, the writings and the mathematical achievements of a remarkable woman. It emphasises the originality of Kovalevskaya's work and assesses her legacy and reputation as a mathematician and scientist. Her ideas are explained in a way that is accessible to a general audience, with diagrams, marginal notes and commentary to help explain the mathematical concepts and provide context. This fascinating book, which also examines Kovalevskaya's love of literature, will be of interest to historians looking for a treatment of the mathematics, and those doing feminist or gender studies.
The Theory of the Top was originally presented by Felix Klein as an 1895 lecture at Gottingen University that was broadened in scope and clarified as a result of collaboration with Arnold Sommerfeld. The Theory of the Top: Volume III. Perturbations: Astronomical and Geophysical Applications is the third installment in a series of four self-contained English translations that provide insights into kinetic theory and kinematics."
Most education research is undertaken in western developed countries. While some research from developing countries does make it into research journals from time to time, but these articles only emphasize the rarity of research in developing countries. The proposed book is unique in that it will cover education in Papua New Guinea over the millennia. Papua New Guinea's multicultural society with relatively recent contact with Europe and the Middle East provides a cameo of the development of education in a country with both a colonial history and a coup-less transition to independence. Discussion will focus on specific areas of mathematics education that have been impacted by policies, research, circumstances and other influences, with particular emphasis on pressures on education in the last one and half centuries. This volume will be one of the few records of this kind in the education research literature as an in-depth record and critique of how school mathematics has been grown in Papua New Guinea from the late 1800s, and should be a useful addition to graduate programs mathematics education courses, history of mathematics, as well as the interdisciplinary fields of cross cultural studies, scholarship focusing on globalization and post / decolonialism, linguistics, educational administration and policy, technology education, teacher education, and gender studies.
This book presents an overview of the ways in which women have been able to conduct mathematical research since the 18th century, despite their general exclusion from the sciences. Grouped into four thematic sections, the authors concentrate on well-known figures like Sophie Germain and Grace Chisholm Young, as well as those who have remained unnoticed by historians so far. Among them are Stanislawa Nidodym, the first female students at the universities in Prague at the turn of the 20th century, and the first female professors of mathematics in Denmark. Highlighting individual biographies, couples in science, the situation at specific European universities, and sociological factors influencing specific careers from the 18th century to the present, the authors trace female mathematicians' status as it evolved from singular and anomalous to virtually commonplace. The book also offers insights into the various obstacles women faced when trying to enter perhaps the "most male" discipline of all, and how some of them continue to shape young girls' self-perceptions and career choices today. Thus, it will benefit scholars and students in STEM disciplines, gender studies and the history of science; women in science, mathematics and at institutions, and those working in mathematics education.
The editors of the present series had originally intended to publish an integrated work on the history of mathematics in the nineteenth century, passing systemati cally from one discipline to another in some natural order. Circumstances beyond their control, mainly difficulties in choosing authors, led to the abandonment of this plan by the time the second volume appeared. Instead of a unified mono graph we now present to the reader a series of books intended to encompass all the mathematics of the nineteenth century, but not in the order of the accepted classification of the component disciplines. In contrast to the first two books of The Mathematics of the Nineteenth Century, which were divided into chapters, this third volume consists of four parts, more in keeping with the nature of the publication. 1 We recall that the first book contained essays on the history of mathemati 2 cal logic, algebra, number theory, and probability, while the second covered the history of geometry and analytic function theory. In the present third volume the reader will find: 1. An essay on the development of Chebyshev's theory of approximation of functions, later called "constructive function theory" by S. N. Bernshtein. This highly original essay is due to the late N. I. Akhiezer (1901-1980), the author of fundamental discoveries in this area. Akhiezer's text will no doubt attract attention not only from historians of mathematics, but also from many specialists in constructive function theory."
The general principles by which the editors and authors of the present edition have been guided were explained in the preface to the first volume of Mathemat ics of the 19th Century, which contains chapters on the history of mathematical logic, algebra, number theory, and probability theory (Nauka, Moscow 1978; En glish translation by Birkhiiuser Verlag, Basel-Boston-Berlin 1992). Circumstances beyond the control of the editors necessitated certain changes in the sequence of historical exposition of individual disciplines. The second volume contains two chapters: history of geometry and history of analytic function theory (including elliptic and Abelian functions); the size of the two chapters naturally entailed di viding them into sections. The history of differential and integral calculus, as well as computational mathematics, which we had planned to include in the second volume, will form part of the third volume. We remind our readers that the appendix of each volume contains a list of the most important literature and an index of names. The names of journals are given in abbreviated form and the volume and year of publication are indicated; if the actual year of publication differs from the nominal year, the latter is given in parentheses. The book History of Mathematics from Ancient Times to the Early Nineteenth Century in Russian], which was published in the years 1970-1972, is cited in abbreviated form as HM (with volume and page number indicated). The first volume of the present series is cited as Bk. 1 (with page numbers)." |
![]() ![]() You may like...
Grid Optimal Integration of Electric…
Andres Ovalle, Ahmad Hably, …
Hardcover
R3,395
Discovery Miles 33 950
Embedded Software Design and Programming…
Katalin Popovici, Frederic Rousseau, …
Hardcover
R4,449
Discovery Miles 44 490
|