![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > History of mathematics
In the early modern period, a crucial transformation occurred in the classical conception of number and magnitude. Traditionally, numbers were merely collections of discrete units that measured some multiple. Magnitude, on the other hand, was usually described as being continuous, or being divisible into parts that are infinitely divisible. This traditional idea of discrete number versus continuous magnitude was challenged in the early modern period in several ways. This detailed study explores how the development of algebraic symbolism, logarithms, and the growing practical demands for an expanded number concept all contributed to a broadening of the number concept in early modern England. An interest in solving practical problems was not, in itself, enough to cause a generalisation of the number concept. It was the combined impact of novel practical applications together with the concomitant development of such mathematical advances as algebraic notation and logarithms that produced a broadened number concept.
This monograph investigates the development of hydrostatics as a science. In the process, it sheds new light on the nature of science and its origins in the Scientific Revolution. Readers will come to see that the history of hydrostatics reveals subtle ways in which the science of the seventeenth century differed from previous periods. The key, the author argues, is the new insights into the concept of pressure that emerged during the Scientific Revolution. This came about due to contributions from such figures as Simon Stevin, Pascal, Boyle and Newton. The author compares their work with Galileo and Descartes, neither of whom grasped the need for a new conception of pressure. As a result, their contributions to hydrostatics were unproductive. The story ends with Newton insofar as his version of hydrostatics set the subject on its modern course. He articulated a technical notion of pressure that was up to the task. Newton compared the mathematical way in hydrostatics and the experimental way, and sided with the former. The subtleties that lie behind Newton's position throws light on the way in which developments in seventeenth-century science simultaneously involved mathematization and experimentation. This book serves as an example of the degree of conceptual change that new sciences often require. It will be of interest to those involved in the study of history and philosophy of science. It will also appeal to physicists as well as interested general readers.
Karl Menger, one of the founders of dimension theory, belongs to the most original mathematicians and thinkers of the twentieth century. He was a member of the Vienna Circle and the founder of its mathematical equivalent, the Viennese Mathematical Colloquium. Both during his early years in Vienna and, after his emigration, in the United States, Karl Menger made significant contributions to a wide variety of mathematical fields, and greatly influenced some of his colleagues. The Selecta Mathematica contain Menger's major mathematical papers, based on his own selection from his extensive writings. They deal with topics as diverse as topology, geometry, analysis and algebra, as well as writings on economics, sociology, logic, philosophy and mathematical results. The two volumes are a monument to the diversity and originality of Menger's ideas.
The Nine Chapters on the Mathematical Art is a classic text: the most important mathematical source in China during the past 2000 years, and comparable in significance to Euclid's Elements in the West. This volume contains the first complete English translation of the Nine Chapters, together with two commentaries written in the 3rd century (by Liu Hui) and 7th century AD, and a further commentary by the translators.
In 1821, Augustin-Louis Cauchy (1789-1857) published a textbook, the Cours d analyse, to accompany his course in analysis at the Ecole Polytechnique. It is one of the most influential mathematics books ever written. Not only did Cauchy provide a workable definition of limits and a means to make them the basis of a rigorous theory of calculus, but he also revitalized the idea that all mathematics could be set on such rigorous foundations. Today, the quality of a work of mathematics is judged in part on the quality of its rigor, and this standard is largely due to the transformation brought about by Cauchy and the Cours d analyse. For this translation, the authors have also added commentary, notes, references, and an index.
The book presents the main features of the Wasan tradition, which is the indigenous mathematics that developed in Japan during the Edo period. (1600-1868). It begins with a description of the first mathematical textbooks published in the 17th century, then shifts to the work of the two leading mathematicians of this tradition, Seki Takakazu and Takebe Katahiro. The book provides substantial information on the historical and intellectual context, the role played by the Chinese mathematical treatises introduced at the late 16th century, and an analysis of Seki 's and Takebe 's contribution to the development of algebra and calculus in Japan.
The tremendous success of indivisibles methods in geometry in the seventeenth century, responds to a vast project: installation of infinity in mathematics. The pathways by the authors are very diverse, as are the characterizations of indivisibles, but there are significant factors of unity between the various doctrines of indivisible; the permanence of the language used by all authors is the strongest sign. These efforts do not lead to the stabilization of a mathematical theory (with principles or axioms, theorems respecting these first statements, followed by applications to a set of geometric situations), one must nevertheless admire the magnitude of the results obtained by these methods and highlights the rich relationships between them and integral calculus. The present book aims to be exhaustive since it analyzes the works of all major inventors of methods of indivisibles during the seventeenth century, from Kepler to Leibniz. It takes into account the rich existing literature usually devoted to a single author. This book results from the joint work of a team of specialists able to browse through this entire important episode in the history of mathematics and to comment it. The list of authors involved in indivisibles field is probably sufficient to realize the richness of this attempt; one meets Kepler, Cavalieri, Galileo, Torricelli, Gregoire de Saint Vincent, Descartes, Roberval, Pascal, Tacquet, Lalouvere, Guldin, Barrow, Mengoli, Wallis, Leibniz, Newton.
Written by the recipient of the 1997 MAA Chauvenet Prize for mathematical exposition, this book tells how the theory of Lie groups emerged from a fascinating cross fertilization of many strains of 19th and early 20th century geometry, analysis, mathematical physics, algebra and topology. The reader will meet a host of mathematicians from the period and become acquainted with the major mathematical schools. The first part describes the geometrical and analytical considerations that initiated the theory at the hands of the Norwegian mathematician, Sophus Lie. The main figure in the second part is Weierstrass' student Wilhelm Killing, whose interest in the foundations of non-Euclidean geometry led to his discovery of almost all the central concepts and theorems on the structure and classification of semisimple Lie algebras. The scene then shifts to the Paris mathematical community and Elie Cartan's work on the representation of Lie algebras. The final part describes the influential, unifying contributions of Hermann Weyl and their context: Hilbert's Göttingen, general relativity and the Frobenius-Schur theory of characters. The book is written with the conviction that mathematical understanding is deepened by familiarity with underlying motivations and the less formal, more intuitive manner of original conception. The human side of the story is evoked through extensive use of correspondence between mathematicians. The book should prove enlightening to a broad range of readers, including prospective students of Lie theory, mathematicians, physicists and historians and philosophers of science.
In this book, several world experts present (one part of) the mathematical heritage of Kolmogorov. Each chapter treats one of his research themes or a subject invented as a consequence of his discoveries. The authors present his contributions, his methods, the perspectives he opened to us, and the way in which this research has evolved up to now. Coverage also includes examples of recent applications and a presentation of the modern prospects.
Joseph Liouville was the most important French mathematician in the gen- eration between Galois and Hermite. This is reflected in the fact that even today all mathematicians know at least one of the more than six theorems named after him and regularly study Liouville's Journal, as the Journal de Mathematiques pures et appliquees is usually nicknamed after its creator. However, few mathematicians are aware of the astonishing variety of Liou- ville's contributions to almost all areas of pure and applied mathematics. The reason is that these contributions have not been studied in their histor- ical context. In the Dictionary of Scientific Biography 1973, Taton [1973] gave a rather sad but also true picture of the Liouville studies carried out up to that date: The few articles devoted to Liouville contain little biographical data. Thus the principal stages of his life must be reconstructed on the ba- sis of original documentation. There is no exhausti ve list of Liou ville's works, which are dispersed in some 400 publications ...His work as a whole has been treated in only two original studies of limited scope those of G. Chrystal and G. Loria. Since this was written, the situation has improved somewhat through the publications of Peiffer, Edwards, Neuenschwander, and myself. Moreover, C. Houzel and I have planned on publishing Liouville's collected works.
Metamathematics and the Philosophical Tradition is the first work to explore in such historical depth the relationship between fundamental philosophical quandaries regarding self-reference and meta-mathematical notions of consistency and incompleteness. Using the insights of twentieth-century logicians from Goedel through Hilbert and their successors, this volume revisits the writings of Aristotle, the ancient skeptics, Anselm, and enlightenment and seventeenth and eighteenth century philosophers Leibniz, Berkeley, Hume, Pascal, Descartes, and Kant to identify ways in which these both encode and evade problems of a priori definition and self-reference. The final chapters critique and extend more recent insights of late 20th-century logicians and quantum physicists, and offer new applications of the completeness theorem as a means of exploring "metatheoretical ascent" and the limitations of scientific certainty. Broadly syncretic in range, Metamathematics and the Philosophical Tradition addresses central and recurring problems within epistemology. The volume's elegant, condensed writing style renders accessible its wealth of citations and allusions from varied traditions and in several languages. Its arguments will be of special interest to historians and philosophers of science and mathematics, particularly scholars of classical skepticism, the Enlightenment, Kant, ethics, and mathematical logic.
This undergraduate textbook is intended primarily for a transition course into higher mathematics, although it is written with a broader audience in mind. The heart and soul of this book is problem solving, where each problem is carefully chosen to clarify a concept, demonstrate a technique, or to enthuse. The exercises require relatively extensive arguments, creative approaches, or both, thus providing motivation for the reader. With a unified approach to a diverse collection of topics, this text points out connections, similarities, and differences among subjects whenever possible. This book shows students that mathematics is a vibrant and dynamic human enterprise by including historical perspectives and notes on the giants of mathematics, by mentioning current activity in the mathematical community, and by discussing many famous and less well-known questions that remain open for future mathematicians. Ideally, this text should be used for a two semester course,
where the first course has no prerequisites and the second is a
more challenging course for math majors; yet, the flexible
structure of the book allows it to be used in a variety of
settings, including as a source of various independent-study and
research projects.
- Following on from the 2000 edition of Jan De Witt's Elementa Curvarum Linearum, Liber Primus, this book provides the accompanying translation of the second volume of Elementa Curvarum Linearum (Foundations of Curved Lines). One of the first books to be published on Analytic Geometry, it was originally written in Latin by the Dutch statesman and mathematician Jan de Witt, soon after Descartes' invention of the subject. - Born in 1625, Jan de Witt served with distinction as Grand Pensionary of Holland for much of his adult life. In mathematics, he is best known for his work in actuarial mathematics as well as extensive contributions to analytic geometry. - Elementa Curvarum Linearum, Liber Secondus moves forward from the construction of the familiar conic sections covered in the Liber Primus, with a discussion of problems connected with their classification; given an equation, it covers how one can recover the standard form, and additionally how one can find the equation's geometric properties. - This volume, begun by Albert Grootendorst (1924-2004) and completed after his death by Jan Aarts, Reinie Erne and Miente Bakker, is supplemented by: - annotation explaining finer points of the translation; - extensive commentary on the mathematics These features make the work of Jan de Witt broadly accessible to today's mathematicians."
The year 2007 marks the 300th anniversary of the birth of one of
the Enlightenment's most important mathematicians and scientists,
Leonhard Euler. This volume is a collection of 24 essays by some of
the world's best Eulerian scholars from seven different countries
about Euler, his life and his work.
The aim of this book is to present and analyze philosophical conceptions concerning mathematics and logic as formulated by Polish logicians, mathematicians and philosophers in the 1920s and 1930s. It was a remarkable period in the history of Polish science, in particular in the history of Polish logic and mathematics. Therefore, it is justified to ask whether and to what extent the development of logic and mathematics was accompanied by a philosophical reflection. We try to answer those questions by analyzing both works of Polish logicians and mathematicians who have a philosophical temperament as well as their research practice. Works and philosophical views of the following Polish scientists will be analyzed: Waclaw Sierpinski, Zygmunt Janiszewski, Stefan Mazurkiewicz, Stefan Banach Hugo Steinhaus, Eustachy Zylinsk and Leon Chwistek, Jan Lukasiewicz, Zygmunt Zawirski, Stanislaw Lesniewski, Tadeusz Kotarbinski, Kazimierz Ajdukiewicz, Alfred Tarski, Andrzej Mostowski and Henryk Mehlberg, Jan Sleszynski, Stanislaw Zaremba and Witold Wilkosz. To indicate the background of scientists being active in the 1920s and 1930s we consider in Chapter 1 some predecessors, in particular: Jan Sniadecki, Jozef Maria Hoene-Wronski, Samuel Dickstein and Edward Stamm.
This work counters historiographies that search for the origins of modern science within the experimental practices of Europe 's first scientific institutions, such as the Cimento. It proposes that we should look beyond the experimental rhetoric found in published works, to find that the Cimento academicians were participants in a culture of natural philosophical theorising that existed throughout Europe.
This clearly written and enlightening textbook provides a concise, introductory guide to the key mathematical concepts and techniques used by computer scientists. Topics and features: ideal for self-study, offering many pedagogical features such as chapter-opening key topics, chapter introductions and summaries, review questions, and a glossary; places our current state of knowledge within the context of the contributions made by early civilizations, such as the ancient Babylonians, Egyptians and Greeks; examines the building blocks of mathematics, including sets, relations and functions; presents an introduction to logic, formal methods and software engineering; explains the fundamentals of number theory, and its application in cryptography; describes the basics of coding theory, language theory, and graph theory; discusses the concept of computability and decideability; includes concise coverage of calculus, probability and statistics, matrices, complex numbers and quaternions.
Diese Arbeit enthiilt zwei grof3ere Fallstudien zur Beziehung zwischen theo- retischer Mathematik und Anwendungen im 19. Jahrhundert. Sie ist das Ergebnis eines mathematikhistorischen Forschungsprojekts am Mathemati- schen Fachbereich der Universitiit-Gesamthochschule Wuppertal und wurde dort als Habilitationsschrift vorgelegt. Ohne das wohlwollende Interesse von Herrn H. Scheid und den Kollegen der Abteilung fUr Didaktik der Mathema- tik ware das nicht moglich gewesen: Inhaltlich verdankt sie - direkt oder indirekt - vielen Beteiligten et- was. So wurde mein Interesse an den kristallographischen Symmetriekon- zepten, dem Thema der ersten Fallstudie, durch Anregungen und Hinweise von Herrn E. Brieskorn geweckt. Sowohl von seiner Seite als auch von Herrn J. J. Burckhardt stammen uberdies viele wert volle Hinweise zum Manuskript von Kapitel I. Herrn C. J. Scriba mochte ich fur seine die gesamte Arbeit betreffenden priizisen Anmerkungen danken und Herrn W. Borho ebenso fUr seine ubergreifenden Kommentare und Vorschlage. Beziiglich der in Kapitel II behandelten projektiven Methoden in der Baustatik des 19. Jahrhunderts gilt mein besonderer Dank den Herren K. -E. Kurrer und T. Hiinseroth fUr ihre zum Teil sehr detaillierten Anmerkungen aus dem Blickwinkel der Geschichte der Bauwissenschaften. Schliefilich geht mein Dank an alle nicht namentlich Erwiihnten, die in Gesprachen, technisch oder auch anderweitig zur Fertig- stellung dieser Arbeit beigetragen haben. Fur die vorliegende Publikation habe ich einen Anhang mit einer Skizze von in unserem Zusammenhang besonders wichtig erscheinenden Aspekten der Theorie der kristallographischen Raumgruppen hinzugefUgt. Ich hoffe, daB er zum Verstiindnis des mathematischen Hintergrunds der historischen Arbeiten des ersten Kapitels beitragt.
This book deals with Newton's understanding of the original divine design hidden in the mathematical laws of nature and delivered to humanity by messengers, such as Noah, Moses and Christ. It is written to an audience of laymen and professionals alike. It is the first scholarly work to point out that for Newton the three laws of motion the Principia and the two central Biblical Commandments (worshipping and loving God alone and loving thy neighbour) touch upon the practical applications of God's original design. The book interprets Newton's mathematical method of fluxions (the calculus) as a divine method through which human beings can purify and guard themselves against material bondage (idolatry), whilst becoming more in tune with the simplicity of the spiritual commandments of the true ancient religion. A comparison with Leibniz's calculus and theological beliefs is given in order to emphasize the uniqueness of Newton's science and spirituality.
An understanding of developments in Arabic mathematics between the IXth and XVth century is vital to a full appreciation of the history of classical mathematics. This book draws together more than ten studies to highlight one of the major developments in Arabic mathematical thinking, provoked by the double fecondation between arithmetic and the algebra of al-Khwarizmi, which led to the foundation of diverse chapters of mathematics: polynomial algebra, combinatorial analysis, algebraic geometry, algebraic theory of numbers, diophantine analysis and numerical calculus. Thanks to epistemological analysis, and the discovery of hitherto unknown material, the author has brought these chapters into the light, proposes another periodization for classical mathematics, and questions current ideology in writing its history. Since the publication of the French version of these studies and of this book, its main results have been admitted by historians of Arabic mathematics, and integrated into their recent publications. This book is already a vital reference for anyone seeking to understand history of Arabic mathematics, and its contribution to Latin as well as to later mathematics. The English translation will be of particular value to historians and philosophers of mathematics and of science.
Viewed as a flashpoint of the Scientific Revolution, early modern astronomy witnessed a virtual explosion of ideas about the nature and structure of the world. This study explores these theories in a variety of intellectual settings, challenging our view of modern science as a straightforward successor to Aristotelian natural philosophy. It shows how astronomers dealt with celestial novelties by deploying old ideas in new ways and identifying more subtle notions of cosmic rationality. Beginning with the celestial spheres of Peurbach and ending with the evolutionary implications of the new star Mira Ceti, it surveys a pivotal phase in our understanding of the universe as a place of constant change that confirmed deeper patterns of cosmic order and stability.
In this volume specialists in mathematics, physics, and linguistics present the first comprehensive analysis of the ideas and influence of Hermann G. Grassmann (1809-1877), the remarkable universalist whose work recast the foundations of these disciplines and shaped the course of their modern development.
Intellectual History and the Identity of John Dee In April 1995, at Birkbeck College, University of London, an interdisciplinary colloquium was held so that scholars from diverse fields and areas of expertise could 1 exchange views on the life and work of John Dee. Working in a variety of fields - intellectual history, history of navigation, history of medicine, history of science, history of mathematics, bibliography and manuscript studies - we had all been drawn to Dee by particular aspects of his work, and participating in the colloquium was to c- front other narratives about Dee's career: an experience which was both bewildering and instructive. Perhaps more than any other intellectual figure of the English Renaissance Dee has been fragmented and dispersed across numerous disciplines, and the various attempts to re-integrate his multiplied image by reference to a particular world-view or philosophical outlook have failed to bring him into focus. This volume records the diversity of scholarly approaches to John Dee which have emerged since the synthetic accounts of I. R. F. Calder, Frances Yates and Peter French. If these approaches have not succeeded in resolving the problematic multiplicity of Dee's activities, they will at least deepen our understanding of specific and local areas of his intellectual life, and render them more historiographically legible. |
You may like...
Structured Electronic Design…
Chris J.M. Verhoeven, Arie van Staveren, …
Hardcover
R3,987
Discovery Miles 39 870
Fieldbus Systems and Their Applications…
D Dietrich, P. Neumann, …
Paperback
R2,203
Discovery Miles 22 030
Privacy and Identity Management. Facing…
Anja Lehmann, Diane Whitehouse, …
Hardcover
R2,228
Discovery Miles 22 280
Failure Modes and Mechanisms in…
P. Singh, Puligandla Viswanadham
Hardcover
R4,221
Discovery Miles 42 210
Optical Interconnection - Foundations…
Christopher S. Tocci, H.J. Caulfield
Hardcover
R3,725
Discovery Miles 37 250
Advanced Logic Synthesis
Andre Inacio Reis, Rolf Drechsler
Hardcover
|